Abinandan S, Shanthakumar S, Panneerselvan L, Venkateswarlu K, Megharaj M (2022) Algalization of acid soils with Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3 enriches bacteria of ecological importance. ACS Agric Sci Technol 2(3):512–520. https://doi.org/10.1021/acsagscitech.1c00277
Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M (2019) Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Crit Rev Biotech 39(8):981–998. https://doi.org/10.1080/07388551.2019.1654972
Abinandan S, Venkateswarlu K, Megharaj M (2021) Phenotypic changes in microalgae at acidic pH mediate their tolerance to higher concentrations of transition metals. Curr Res Microbiol Sci 2:100081. https://doi.org/10.1016/j.crmicr.2021.100081
Adesanya VO, Davey MP, Scott SA, Smith AG (2014) Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Bioresour Technol 157:293–304. https://doi.org/10.1016/j.biortech.2014.01.032
Akley E (2023) Wood vinegar promotes soil health and the productivity of cowpea. Agronomy 13(10):2497. https://doi.org/10.3390/agronomy13102497
Arora S, Mishra G (2019) Biochemical modulation of Monodopsis subterranea (Eustigmatophyceae) by auxin and cytokinin enhances eicosapentaenoic acid productivity. J Appl Phycol 31:3441–3452. https://doi.org/10.1007/s10811-019-01844-3
Bao Z, Zhu Y, Feng Y, Zhang K, Zhang M, Wang Z, Yu L (2022) Enhancement of lipid accumulation and docosahexaenoic acid synthesis in Schizochytrium sp. H016 by exogenous supplementation of sesamol. Bioresour Technol 345:126527. https://doi.org/10.1016/j.biortech.2021.126527
Benzon HRL, Lee SC (2016) Potential of wood vinegar in enhancing fruit yield and antioxidant capacity in tomato. Korean J Plant Res 29(6):704–711. https://doi.org/10.7732/kjpr.2016.29.6.704
Çakirsoy I, Miyamoto T, Ohtake N (2022) Physiology of microalgae and their application to sustainable agriculture: a mini-review. Front Plant Sci 13:1005991. https://doi.org/10.3389/fpls.2022.1005991
Article PubMed PubMed Central Google Scholar
Cândido NR, Pasa VMD, de Oliveira VA, Campos ÂD, de Fátima Â, Modolo LV (2023) Understanding the multifunctionality of pyroligneous acid from waste biomass and the potential applications in agriculture. Sci Tot Environ 881:163519. https://doi.org/10.1016/j.scitotenv.2023.163519
Cao TND, Mukhtar H, Le LT, Tran DPH, Ngo MTT, Nguyen TB, Bui XT (2023) Roles of microalgae-based biofertilizer in sustainability of green agriculture and food-water-energy security nexus. Sci Total Environ 870:161927. https://doi.org/10.1016/j.scitotenv.2023.161927
Caporgno MP, Böcker L, Müssner C, Stirnemann E, Haberkorn I, Adelmann H, Handschin S, Windhab EJ, Mathys A (2020) Extruded meat analogues based on yellow, heterotrophically cultivated Auxenochlorella protothecoides microalgae. Innov Food Sci Emerg Technol 59:102275. https://doi.org/10.1016/j.ifset.2019.102275
Cardelli R, Becagli M, Marchini F, Saviozzi A (2020) Soil biochemical activities after the application of pyroligneous acid to soil. Soil Res 58(5):461–467
Cecchin M, Benfatto S, Griggio F, Mori A, Cazzaniga S, Vitulo N, Delledonne M, Ballottari M (2018) Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana. Sci Rep 8:6465. https://doi.org/10.1038/s41598-018-24979-8
Article PubMed PubMed Central Google Scholar
Chabili A, Minaoui F, Hakkoum Z, Douma M, Meddich A, Loudiki M (2024) A comprehensive review of microalgae and cyanobacteria-based biostimulants for agriculture uses. Plants 13(2):159. https://doi.org/10.3390/plants13020159
Article PubMed PubMed Central Google Scholar
Chamizo S, Mugnai G, Rossi F, Certini G, de De PR (2018) Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front Environ Sci 6:49. https://doi.org/10.3389/fenvs.2018.00049
Correa-Aguado HC, Cerrillo-Rojas GV, Rocha-Uribe A, Soria-Guerra RE, Morales-Domínguez JF (2021) Benzyl amino purine and gibberellic acid coupled to nitrogen-limited stress induce fatty acids, biomass accumulation, and gene expression in Scenedesmus obliquus. Phyton 90(2):515–524. https://doi.org/10.32604/phyton.2021.013619
Corsi S, Ruggeri G, Zamboni A, Bhakti P, Espen L, Ferrante A, Noseda M, Varanini Z, Scarafoni A (2022) A bibliometric analysis of the scientific literature on biostimulants. Agronomy 12(6):1257. https://doi.org/10.3390/agronomy12061257
Couto D, Melo T, Conde TA, Costa M, Silva J, Domingues MRM, Domingues P (2021) Chemoplasticity of the polar lipid profile of the microalgae Chlorella vulgaris grown under heterotrophic and autotrophic conditions. Algal Res 53:02128. https://doi.org/10.1016/j.algal.2020.102128
de Souza AE, Pimenta AS, Feijó FMC, Castro RVO, Fasciotti M, Monteiro TVC, De Lima KMG (2018) Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora. J Appl Microbiol 124(1):85–96. https://doi.org/10.1111/jam.13626
Desjardins SM, Laamanen CA, Basiliko N, Scott JA (2021) Selection and re-acclimation of bioprospected acid-tolerant green microalgae suitable for growth at low pH. Extremophiles 25:129–141. https://doi.org/10.1007/s00792-021-01216-1
Do TCV, Tran DT, Le TG, Nguyen QT (2020a) Characterization of endogenous auxins and gibberellins produced by Chlorella sorokiniana TH01 under phototrophic and mixtrophic cultivation modes toward applications in microalgal biorefinery and crop research. J Chem 4910621:1–11. https://doi.org/10.1155/2020/4910621
Do TCV, Tran DT, Le TG, Nguyen QT (2020b) Characterization of endogenous auxins and gibberellins produced by Chlorella sorokiniana TH01 under phototrophic and mixtrophic cultivation modes toward applications in microalgal biorefinery and crop research. J Chem 2020:4910621. https://doi.org/10.1155/2020/4910621
Du H, Ahmed F, Lin B, Li Z, Huang Y, Sun G, Ding H, Wang C, Meng C, Gao Z (2017) The effects of plant growth regulators on cell growth, protein, carotenoid, PUFAs and lipid production of Chlorella pyrenoidosa ZF strain. Energies 10(11):1696. https://doi.org/10.3390/en10111696
Du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021
Erofeeva EA (2023) Environmental hormesis in living systems: the role of hormetic trade-offs. Sci Total Environ 901:166022. https://doi.org/10.1016/j.scitotenv.2023.166022
Falkowska M, Pietryczuk A, Piotrowska A, Bajguz A, Grygoruk A, Czerpak R (2011) The effect of gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) Beijerinck exposed to cadmium and lead stress. Pol J Environ Stud 20(1):53–59
Fedeli R, Vannini A, Guarnieri M, Monaci F, Loppi S (2022) Bio-based solutions for agriculture: foliar application of wood distillate alone and in combination with other plant-derived corroborants results in different effects on lettuce (Lactuca sativa L.). Biol 11(3):404. https://doi.org/10.3390/biology11030404
Gonçalves J, Freitas J, Fernandes I, Silva P (2023) Microalgae as biofertilizers: a sustainable way to improve soil fertility and plant growth. Sustainability 15(16):12413. https://doi.org/10.3390/su151612413
Han T, Han X, Ye X, Xi Y, Zhang Y, Guan H (2022) Applying mixotrophy strategy to enhance biomass production and nutrient recovery of Chlorella pyrenoidosa from biogas slurry: an assessment of the mixotrophic synergistic effect. Bioresour Technol 366:128185. https://doi.org/10.1016/j.biortech.2022.128185
Hao Z, Bagavathiannan M, Li Y, Qu M, Wang Z, Yu J (2021) Wood vinegar for control of broadleaf weeds in dormant turfgrass. Weed Tech 35(6):901–907. https://doi.org/10.1017/wet.2021.95
Iacomino G, Idbella M, Staropoli A, Nanni B, Bertoli T, Vinale F, Bonanomi G (2024) Exploring the potential of wood vinegar: chemical composition and biological effects on crops and pests. Agronomy 14(1):114. https://doi.org/10.3390/agronomy14010114
Idowu O, Ndede E, Kurebito S, Tokunari T, Jindo K (2023) Effect of the interaction between wood vinegar and biochar feedstock on tomato plants. J Soil Sci Plant Nutr 23(2):1599–1610. https://doi.org/10.1007/s42729-023-01227-1
Jassey VE, Walcker R, Kardol P, Geisen S, Heger T, Lamentowicz M, Hamard S, Lara E (2022) Contribution of soil algae to the global carbon cycle. New Phytol 234(1):64–76. https://doi.org/10.1111/nph.17950
Jiang L, Pei H, Hu W, Han F, Zhang L, Hou Q (2015) Effect of diethyl aminoethyl hexanoate on the accumulation of high-value biocompounds produced by two novel isolated microalgae. Bioresour Technol 197:178–184. https://doi.org/10.1016/j.biortech.2015.07.106
Comments (0)