Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunological Rev. 2009;228:273–87.
Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79.
Bao EL, Nandakumar SK, Liao X, Bick AG, Karjalainen J, Tabaka M, et al. Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature. 2020;586:769–75.
CAS PubMed PubMed Central Google Scholar
Tapper W, Kralovics R, Harutyunyan A, Zoi K, Leung W, Godfrey A, et al. Genetic variation at MECOM, TERT, JAK2 and MYB predispose to myeloproliferative neoplasm. Nat Commun. 2015;2015:6691.
Zoi K, Cross N. Genomics of Myeloproliferative Neoplasms. J Clin Oncol. 2017;35:947–54.
Olcaydu D, Harutyunyan A, Jäger R, Berg T, Gisslinger B, Pabinger I, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41:450–4.
Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL, et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet. 2009;41:455–9.
CAS PubMed PubMed Central Google Scholar
Lanikova L, Babosova O, Swierczek S, Wang L, Wheeler DA, Divoky V, et al. Coexistence of gain-of-function JAK2 germ line mutations with JAK2V617F in polycythemia vera. Blood. 2016;128:2266–70.
CAS PubMed PubMed Central Google Scholar
Benton CB, Boddu PC, DiNardo CD, Bose P, Wang F, Assi R, et al. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia. Cancer-Am Cancer Soc. 2019;125:1855–66.
Mead AJ, Chowdhury O, Pecquet C, Dusa A, Woll P, Atkinson D, et al. Impact of isolated germline mutation on human hematopoiesis. Blood. 2013;121:4156–65.
Brooks SA, Luty SB, Lai HY, Morse SJ, Nguyen TK, Royer LR, et al. JAK2 results in cytokine hypersensitivity without causing an overt myeloproliferative disorder in a mouse transduction-transplantation model. Exp Hematol. 2016;44:24–9.
Luque Paz D, Kralovics R, Skoda RC. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood. 2023;141:1909–21.
Kapralova K, Horvathova M, Pecquet C, Fialova Kucerova J, Pospisilova D, Leroy E, et al. Cooperation of germ line JAK2 mutations E846D and R1063H in hereditary erythrocytosis with megakaryocytic atypia. Blood. 2016;128:1418–23.
Mambet C, Babosova O, Defour J-P, Leroy E, Necula L, Stanca O, et al. Cooccurring JAK2 V617F and R1063H mutations increase JAK2 signaling and neutrophilia in myeloproliferative neoplasms. Blood. 2018;132:2695–9.
Lee E-J, Dykas DJ, Leavitt AD, Camire RM, Ebberink E, García de Frutos P, et al. Whole-exome sequencing in evaluation of patients with venous thromboembolism. Blood Adv. 2017;1:1224–37.
CAS PubMed PubMed Central Google Scholar
Reeves BN, Beckman JD. Novel Pathophysiological Mechanisms of Thrombosis in Myeloproliferative Neoplasms. Curr Hematologic Malignancy Rep. 2021;16:304–13.
He F, Laranjeira ABA, Kong T, Lin S, Ashworth KJ, Liu A, et al. Multiomic profiling reveals metabolic alterations mediating aberrant platelet activity and inflammation in myeloproliferative neoplasms. J Clin Investig. 2024;134:e17225631.
Carrelha J, Mazzi S, Winroth A, Hagemann-Jensen M, Ziegenhain C, Högstrand K, et al. Alternative platelet differentiation pathways initiated by nonhierarchically related hematopoietic stem cells. Nat Immunol. 2024;25:1007–19.
CAS PubMed PubMed Central Google Scholar
Poscablo DM, Worthington AK, Smith-Berdan S, Rommel MGE, Manso BA, Adili R, et al. An age-progressive platelet differentiation path from hematopoietic stem cells causes exacerbated thrombosis. Cell. 2024;187:3090–107. e21.
CAS PubMed PubMed Central Google Scholar
Barrios M, Rodríguez-Acosta A, Gil A, Salazar AM, Taylor P, Sánchez EE, et al. Comparative hemostatic parameters in BALB/c, C57BL/6 and C3H/He mice. Thromb Res. 2009;124:338–43.
Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ. Quiescent Hematopoietic Stem Cells Accumulate DNA Damage during Aging that Is Repaired upon Entry into Cell Cycle. Cell Stem Cell. 2014;15:37–50.
CAS PubMed PubMed Central Google Scholar
Kaisrlikova M, Kundrat D, Koralkova P, Trsova I, Lenertova Z, Votavova H, et al. Attenuated cell cycle and DNA damage response transcriptome signatures and overrepresented cell adhesion processes imply accelerated progression in patients with lower-risk myelodysplastic neoplasms. Int J Cancer. 2024;154:1652–68.
Shin JJ, Schröder MS, Caiado F, Wyman SK, Bray NL, Bordi M, et al. Controlled Cycling and Quiescence Enables Efficient HDR in Engraftment-Enriched Adult Hematopoietic Stem and Progenitor Cells. Cell Rep. 2020;32:108093.
CAS PubMed PubMed Central Google Scholar
Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R, et al. Epigenomic Profiling of Young and Aged HSCs Reveals Concerted Changes during Aging that Reinforce Self-Renewal. Cell Stem Cell. 2014;14:673–88.
CAS PubMed PubMed Central Google Scholar
Chen C, Liu Y, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009;2:ra75.
PubMed PubMed Central Google Scholar
Cabezas-Wallscheid N, Klimmeck D, Hansson J, Lipka DB, Reyes A, Wang Q, et al. Identification of Regulatory Networks in HSCs and Their Immediate Progeny via Integrated Proteome, Transcriptome, and DNA Methylome Analysis. Cell Stem Cell. 2014;15:507–22.
Wang Z, Emmel G, Lim HS, Zhu W, Kosters A, Ghosn EEB, et al. Stromal STAT5-Mediated Trophic Activity Regulates Hematopoietic Niche Factors. Stem Cells. 2023;41:944–57.
CAS PubMed PubMed Central Google Scholar
Baker SJ, Rane SG, Reddy EP. Hematopoietic cytokine receptor signaling. Oncogene. 2007;26:6724–37.
Cho RH, Sieburg HB, Muller-Sieburg CE. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood. 2008;111:5553–61.
CAS PubMed PubMed Central Google Scholar
Kasbekar M, Mitchell CA, Proven MA, Passegué E. Hematopoietic stem cells through the ages: A lifetime of adaptation to organismal demands. Cell Stem Cell. 2023;30:1403–20.
CAS PubMed PubMed Central Google Scholar
Gao S, Wu Z, Kannan J, Mathews L, Feng X, Kajigaya S, et al. Comparative Transcriptomic Analysis of the Hematopoietic System between Human and Mouse by Single Cell RNA Sequencing. Cells. 2021;10:973.
Uras IZ, Maurer B, Nivarthi H, Jodl P, Kollmann K, Prchal-Murphy M, et al. CDK6 coordinates JAK2 (V617F) mutant MPN via NF-κB and apoptotic networks. Blood. 2019;133:1677–90.
CAS PubMed PubMed Central Google Scholar
Liang Y, Van Zant G, Szilvassy SJ. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood. 2005;106:1479–87.
CAS PubMed PubMed Central Google Scholar
Ho Y-H, del Toro R, Rivera-Torres J, Rak J, Korn C, García-García A, et al. Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging. Cell Stem Cell. 2019;25:407–18. e6.
CAS PubMed PubMed Central Google Scholar
Rundberg Nilsson A, Soneji S, Adolfsson S, Bryder D, Pronk CJ. Human and Murine Hematopoietic Stem Cell Aging Is Associated with Functional Impairments and Intrinsic Megakaryocytic/Erythroid Bias. Plos One. 2016;11:e0158369.
PubMed PubMed Central Google Scholar
Chen E, Beer PA, Godfrey AL, Ortmann CA, Li J, Costa-Pereira AP, et al. Distinct Clinical Phenotypes Associated with JAK2V617F Reflect Differential STAT1 Signaling. Cancer Cell. 2010;18:524–35.
CAS PubMed PubMed Central Google Scholar
Kleppe M, Koche R, Zou L, van Galen P, Hill CE, Dong L, et al. Dual Targeting of Oncogenic Activation and Inflammatory Signaling Increases Therapeutic Efficacy in Myeloproliferative Neoplasms. Cancer Cell. 2018;33:29–43.e7.
Comments (0)