Insights on Clinical Development of Cell and Gene Therapy for Rare Diseases—by DahShu Innovative Design Scientific Working Group (IDSWG)

Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, Murphy D, Le Cam Y, Rath A. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. European Journal of Human Genetics : EJHG. 2020;28(2):165–73. https://doi.org/10.1038/s41431-019-0508-0.

Article  PubMed  Google Scholar 

Food and Drug Administration. Human gene therapy for rare diseases: guidance for industry. 2020a. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/human-gene-therapy-rare-diseases.

European Commission. Rare diseases. 2021. https://research-and-innovation.ec.europa.eu/research-area/health/rare-diseases_en#:~:text=EU. Research on rare diseases, million people in the EU.

Frederiksen SD, Avramović V, Maroilley T, Lehman A, Arbour L, Tarailo-Graovac M. Rare disorders have many faces: in silico characterization of rare disorder spectrum. Orphanet J Rare Dis. 2022;17(1): 76. https://doi.org/10.1186/s13023-022-02217-9.

Article  PubMed  PubMed Central  Google Scholar 

Young CM, Quinn C, Trusheim MR. Durable cell and gene therapy potential patient and financial impact: US projections of product approvals, patients treated, and product revenues. Drug Discov Today. 2022;27(1):17–30. https://doi.org/10.1016/j.drudis.2021.09.001.

Article  CAS  PubMed  Google Scholar 

ICON. Mainstreaming cell and gene therapy—realizing its potential. 2022. https://www.biopharmadive.com/spons/mainstreaming-cell-and-gene-therapy-realizing-its-potential/637011/.

Salazar-Fontana LI. A regulatory risk-based approach to ATMP/CGT development: integrating scientific challenges with current regulatory expectations. Front Med. 2022;9: 855100. https://doi.org/10.3389/fmed.2022.855100.

Article  Google Scholar 

Bellino S, La Salvia A, Cometa MF, Botta R. Cell-based medicinal products approved in the European Union: current evidence and perspectives. Front Pharmacol. 2023;14:1200808. https://doi.org/10.3389/fphar.2023.1200808.

Article  PubMed  PubMed Central  Google Scholar 

Shukla V, Seoane-Vazquez E, Fawaz S, Brown L, Rodriguez-Monguio R. The landscape of cellular and gene therapy products: authorization, discontinuations, and cost. Hum Gene Ther Clin Dev. 2019;30(3):102–13. https://doi.org/10.1089/humc.2018.201.

Article  CAS  PubMed  Google Scholar 

Shin W, Kim MG, Kim A. Comparison of international guidelines for early-phase clinical trials of cellular and gene therapy products. Transl Clin Pharmacol. 2022;30(1):13–23. https://doi.org/10.12793/tcp.2022.30.e2.

Article  PubMed  PubMed Central  Google Scholar 

Food and Drug Administration. Formal meetings between the FDA and sponsors or applicants of PDUFA products—guidance for industry. CBER, CDER. 2017. https://www.fda.gov/media/109951/download

El-Kadiry AE-H, Rafei M, Shammaa R. Cell therapy: types, regulation, and clinical benefits. Front Med. 2021;8: 756029. https://doi.org/10.3389/fmed.2021.756029.

Article  Google Scholar 

Marcuzzi A, Maximova N. Editorial: Advances in stem cell therapy: new applications and innovative therapeutic approaches. Front Med. 2023;10: 1225551. https://doi.org/10.3389/fmed.2023.1225551.

Article  Google Scholar 

Tsujimoto H, Osafune K. Current status and future directions of clinical applications using iPS cells-focus on Japan. FEBS J. 2022;289(23):7274–91. https://doi.org/10.1111/febs.16162.

Article  CAS  PubMed  Google Scholar 

Han J, Zhang B, Zheng S, Jiang Y, Zhang X, Mao K. The progress and prospects of immune cell therapy for the treatment of cancer. Cell Transpl. 2024;33:9636897241231892. https://doi.org/10.1177/09636897241231892.

Article  Google Scholar 

Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol. 2023;20(6):359–71. https://doi.org/10.1038/s41571-023-00754-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dolgin E. Stealthy stem cells to treat disease. Nature. 2024. https://doi.org/10.1038/d41586-024-00590-y.

Article  Google Scholar 

Scheller EL, Krebsbach PH. Gene therapy: design and prospects for craniofacial regeneration. J Dent Res. 2009;88(7):585–96. https://doi.org/10.1177/0022034509337480.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thornburg CD, Simmons DH, von Drygalski A. Evaluating gene therapy as a potential paradigm shift in treating severe hemophilia. BioDrugs Clin ImmunotherBiopharm Gene Ther. 2023;37(5):595–606. https://doi.org/10.1007/s40259-023-00615-4.

Article  Google Scholar 

Hussein M, Molina MA, Berkhout B, Herrera-Carrillo E. A CRISPR-Cas cure for HIV/AIDS. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24021563.

Article  PubMed  PubMed Central  Google Scholar 

Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol. 2017;16(10):837–47. https://doi.org/10.1016/S1474-4422(17)30280-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kröger N, Gribben J, Chabannon C, Yakoub-Agha I, Einsele H. The EBMT/EHA CAR-T cell handbook. Cham: Springer; 2022

Food and Drug Administration. What is gene therapy?. 2018. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/what-gene-therapy.

Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6(1):53. https://doi.org/10.1038/s41392-021-00487-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trivedi PD, Byrne BJ, Corti M. Evolving horizons: Adenovirus vectors’ timeless influence on cancer, gene therapy and vaccines. Viruses. 2023. https://doi.org/10.3390/v15122378.

Article  PubMed  PubMed Central  Google Scholar 

Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: the Rubik’s cube of human gene therapy. Mol Ther 2022;30(12):3515–3541. https://doi.org/10.1016/j.ymthe.2022.09.015

Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358–78. https://doi.org/10.1038/s41573-019-0012-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poletti V, Mavilio F. Designing lentiviral vectors for gene therapy of genetic diseases. Viruses. 2021. https://doi.org/10.3390/v13081526.

Article  PubMed  PubMed Central  Google Scholar 

Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res. 2015;9(1):GE01-6. https://doi.org/10.7860/JCDR/2015/10443.5394.

Article  CAS  PubMed  PubMed Central  Google Scholar 

European Medicines Agency. Guide on advanced therapy medicinal products—non-clinical development flowchart. 2021. https://www.ema.europa.eu/en/documents/other/guide-advanced-therapy-medicinal-products-non-clinical-development-flowchart_en.pdf

Food and Drug Administration. Preclinical assessment of investigational cellular and gene therapy products: guidance for industry. 2013. https://www.fda.gov/media/87564/download

Huang Y. Preclinical considerations for gene therapy products: an FDA perspective. 2017. https://www.toxicology.org/groups/sig/aact/images/AACT/webinar.presentation.Huang.final.pdf.

Charles R. Preclinical toxicology considerations for cell and gene therapy. 2021.https://criver.widen.net/s/d6mpxgrfp5/sa-toxicology-cgt-brochure

McBlane JW, Phul P, Sharpe M. Preclinical development of cell-based products: a European regulatory science perspective. Pharm Res. 2018;35(8):165. https://doi.org/10.1007/s11095-018-2437-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghadessi M, Tang R, Zhou J, Liu R, Wang C, Toyoizumi K, Mei C, Zhang L, Deng CQ, Beckman RA. A roadmap to using historical controls in clinical trials – by Drug Information Association Adaptive Design Scientific Working Group (DIA-ADSWG). Orphanet J Rare Dis. 2020;15(1):69. https://doi.org/10.1186/s13023-020-1332-x.

Article  PubMed  PubMed Central  Google Scholar 

European Medicines Agency. CASGEVY. 2023a. https://www.ema.europa.eu/en/medicines/human/EPAR/casgevy.

Food and Drug Administration. CASGEVY. 2023a. https://www.fda.gov/media/174615/download?attachment.

Food and Drug Administration. LYFGENIA. 2023e. https://www.fda.gov/media/174610/download?attachment.

European Medicines Agency. 2023b. Reflection paper on establishing efficacy based on single arm trials submitted as pivotal evidence in a marketing authorisation. https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-establishing-efficacy-based-single-arm-trials-submitted-pivotal-evidence-marketing-authorisation_en.pdf.

Food and Drug Administration. Considerations for the design of early-phase clinical trials of cellular and gene therapy products: guidance for industry. 2015a. https://www.fda.gov/files/vaccines/2C/blood/26/biologics/published/Considerations-for-the-Design-of-Early-Phase-Clinical-Trials-of-Cellular-and-Gene-Therapy-Products-Guidance-for-Industry.pdf.

Schiess M, Suescun J, Green C, Tharp E, Chandra S, Adams C, Shahnawaz M, Rodarte E, Thyne V, Ellmore T. Preliminary report on the efficacy of allogeneic bone marrow-derived mesenchymal stem cells as a disease-modifying therapy for idiopathic Parkinson’s disease: Phase IIa double-blind, randomized controlled trial. Mov Disord. 2023;38(suppl 1):S49–S49.

Comments (0)

No login
gif