Semantic classification of Indonesian consumer health questions

Weissenborn D, Tsatsaronis G, Schroeder M. Answering Factoid Questions in the Biomedical Domain. In: BioASQ@CLEF. Heidelberg: Springer; 2013.

Wiese G, Weissenborn D, Neves M. Neural Domain Adaptation for Biomedical Question Answering. In: Levy R, Specia L, editors. Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017). Vancouver: Association for Computational Linguistics; 2017. pp. 281–9. https://aclanthology.org/K17-1029. https://doi.org/10.18653/v1/K17-1029.

Yang Z, Zhou Y, Nyberg E. Learning to Answer Biomedical Questions: OAQA at BioASQ 4B. In: Kakadiaris IA, Paliouras G, Krithara A, editors. Proceedings of the Fourth BioASQ workshop. Berlin: Association for Computational Linguistics; 2016. pp. 23–37. https://aclanthology.org/W16-3104. https://doi.org/10.18653/v1/W16-3104.

Ben Abacha A, Zweigenbaum P. MEANS: a medical question-answering system combining NLP techniques and semantic web technologies. Inf Process Manag. 2015;51(5):570–94. https://doi.org/10.1016/j.ipm.2015.04.006.

Article  Google Scholar 

Cao Y, Liu F, Simpson P, Antieau L, Bennett A, Cimino JJ, et al. AskHERMES: an online question answering system for complex clinical questions. J Biomed Inform. 2011;44(2):277–88. https://doi.org/10.1016/j.jbi.2011.01.004.

Article  Google Scholar 

Jin Q, Yuan Z, Xiong G, Yu Q, Ying H, Tan C, et al. Biomedical Question Answering: A Survey of Approaches and Challenges. ACM Comput Surv (CSUR). 2021;55:1–36.

Google Scholar 

Lamurias A, Sousa D, Couto FM. Generating biomedical question answering corpora from Q &a forums. IEEE Access. 2020;8:161042–51. https://doi.org/10.1109/ACCESS.2020.3020868.

Article  Google Scholar 

Yang Z, Gupta N, Sun X, Xu D, Zhang C, Nyberg E. Learning to Answer Biomedical Factoid & List Questions: OAQA at BioASQ 3B. In: Conference and Labs of the Evaluation Forum. Heidelberg: Springer; 2015.

Lally A, Prager JM, McCord MC, Boguraev BK, Patwardhan S, Fan J, et al. Question analysis: how Watson reads a clue. IBM J Res Dev. 2012;56(3.4): 2:1-2:14. https://doi.org/10.1147/JRD.2012.2184637.

Article  Google Scholar 

Kilicoglu H, Abacha AB, Mrabet Y, Shooshan SE, Rodriguez LM, Masterton K, et al. Semantic annotation of consumer health questions. BMC Bioinformatics. 2018;19. https://doi.org/10.1186/s12859-018-2045-1.

Patrick J, Li M. An ontology for clinical questions about the contents of patient notes. J Biomed Inform. 2012;45(2):292–306.

Google Scholar 

Roberts K, Masterton K, Fiszman M, Kilicoglu H, Demner-Fushman D. Annotating question types for consumer health questions. In: Proceedings of the Fourth LREC Workshop on Building and Evaluating Resources for Health and Biomedical Text Processing. Paris: European Language Resources Association (ELRA); 2014.

Ely JW, Osheroff JA, Ebell MH, Bergus GR, Levy BT, Chambliss ML, et al. Analysis of questions asked by family doctors regarding patient care. BMJ. 1999;319(7206):358–61.

Google Scholar 

Roberts K, Masterton K, Fiszman M, Kilicoglu H, Demner-Fushman D. Annotating Question Decomposition on Complex Medical Questions. In: Calzolari N, Choukri K, Declerck T, Loftsson H, Maegaard B, Mariani J, et al., editors. Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC‘14). Reykjavik: European Language Resources Association (ELRA); 2014. pp. 2598–602. https://aclanthology.org/L14-1156/.

Hakim AN, Mahendra R, Adriani M, Ekakristi AS. Corpus development for Indonesian consumer-health question answering system. In: 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS). Piscataway: Institute of Electrical and Electronics Engineers (IEEE); 2017. pp. 222–7. https://api.semanticscholar.org/CorpusID:19151762.

Roberts K, Kilicoglu H, Fiszman M, Demner-Fushman D. Automatically classifying question types for consumer health questions. In: AMIA Annual Symposium Proceedings. Vol. 2014. Arlington: American Medical Informatics Association; 2014. p. 1018.

Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ. LIBLINEAR: a library for large linear classification. J Mach Learn Res. 2008;9:1871–4.

MATH  Google Scholar 

Pudil P, Novovičová J, Kittler J. Floating search methods in feature selection. Pattern Recogn Lett. 1994;15(11):1119–25.

Google Scholar 

Sarrouti M, Ouatik El Alaoui S. A Machine Learning-based Method for Question Type Classification in Biomedical Question Answering. Methods Inf Med. 2017;56. https://doi.org/10.3414/ME16-01-0116.

Kilicoglu H, Abacha AB, M’rabet Y, Roberts K, Rodriguez L, Shooshan S, et al. Annotating named entities in consumer health questions. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). Paris: European Language Resources Association (ELRA); 2016. pp. 3325–32.

Lafferty JD, McCallum A, Pereira FCN. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proceedings of the Eighteenth International Conference on Machine Learning. ICML ’01. San Francisco: Morgan Kaufmann Publishers Inc.; 2001. pp. 282–9.

Straus SE, Glasziou P, Richardson WS, Haynes RB. Evidence-based medicine E-book: how to practice and teach EBM. Edinburgh: Elsevier Health Sciences; 2019.

Google Scholar 

Athenikos SJ, Han H, Brooks AD. Semantic analysis and classification of medical questions for a logic-based medical question-answering system. In: 2008 IEEE International Conference on Bioinformatics and Biomedicine Workshops. Piscataway: IEEE; 2008. pp. 111–2.

Ely JW, Osheroff JA, Gorman PN, Ebell MH, Chambliss ML, Pifer EA, et al. A taxonomy of generic clinical questions: classification study. BMJ. 2000;321(7258):429–32.

Google Scholar 

Reynolds RD. A family practice article filing system. J Fam Pract. 1995;41:583–90.

Google Scholar 

Goodwin TR, Harabagiu SM. Medical question answering for clinical decision support. In: Proceedings of the 25th ACM international on conference on information and knowledge management. New York: Association for Computing Machinery (ACM); 2016. pp. 297–306.

Goodwin TR, Harabagiu SM. Knowledge representations and inference techniques for medical question answering. ACM Trans Intell Syst Technol. 2017;26. https://doi.org/10.1145/3106745.

Cairns B, Nielsen RD, Masanz JJ, Martin JH, Palmer M, Ward WH, et al. The MiPACQ clinical question answering system. AMIA Ann Symp Proc. 2011;2011:171–80.

Google Scholar 

Kilicoglu H, Fiszman M, Demner-Fushman D. Interpreting Consumer Health Questions: The Role of Anaphora and Ellipsis. In: Cohen KB, Demner-Fushman D, Ananiadou S, Pestian J, Tsujii J, editors. Proceedings of the 2013 Workshop on Biomedical Natural Language Processing. Sofia: Association for Computational Linguistics; 2013. pp. 54–62. https://aclanthology.org/W13-1907.

Liu F, Antieau LD, Yu H. Toward automated consumer question answering: automatically separating consumer questions from professional questions in the healthcare domain. J Biomed Inform. 2011;44(6):1032–8. https://doi.org/10.1016/j.jbi.2011.08.008.

Article  Google Scholar 

Zhang Y. Contextualizing Consumer Health Information Searching: An Analysis of Questions in a Social Q &A Community. In: Proceedings of the 1st ACM International Health Informatics Symposium. IHI ’10. New York: Association for Computing Machinery; 2010. pp. 210–9. https://doi.org/10.1145/1882992.1883023.

Kilicoglu H, Fiszman M, Roberts K, Demner-Fushman D. An ensemble method for spelling correction in consumer health questions. In: AMIA Annual Symposium Proceedings. Vol. 2015. Arlington: American Medical Informatics Association; 2015. p. 727.

Roberts K, Demner-Fushman D. Interactive use of online health resources: a comparison of consumer and professional questions. J Am Med Inform Assoc. 2016;23(4):802–11.

Google Scholar 

Andersen U, Braasch A, Henriksen L, Huszka C, Johannsen A, Kayser L, et al. Creation and use of Language Resources in a Question-Answering eHealth System. In: Calzolari N, Choukri K, Declerck T, Doğan MU, Maegaard B, Mariani J, et al., editors. Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC‘12). Istanbul, Turkey: European Language Resources Association (ELRA); 2012. pp. 2536–42. https://aclanthology.org/L12-1274/.

Van Der Volgen J, Harris B, Demner-Fushman D. Analysis of consumer health questions for development of question–answering technology. In: Proceedings of one HEALTH: Information in an interdependent world, the 2013 annual meeting and exhibition of the Medical Library Association (MLA). Chicago: Medical Library Association; 2013.

Roberts K, Kilicoglu H, Fiszman M, Demner-Fushman D. Decomposing Consumer Health Questions. In: Cohen K, Demner-Fushman D, Ananiadou S, Tsujii Ji, editors. Proceedings of BioNLP 2014. Baltimore: Association for Computational Linguistics; 2014. pp. 29–37. https://aclanthology.org/W14-3405/.

Surdeanu M, Ciaramita M, Zaragoza H. Learning to Rank Answers on Large Online QA Collections. In: Moore JD, Teufel S, Allan J, Furui S, editors. Proceedings of ACL-08: HLT. Columbus: Association for Computational Linguistics; 2008. pp. 719–27. https://aclanthology.org/P08-1082/.

Ely JW, Osheroff JA, Ferguson KJ, Chambliss ML, Vinson DC, Moore JL. Lifelong self-directed learning using a computer database of clinical questions. J Fam Pract. 1997;45(5):382–90.

Google Scholar 

D’Alessandro DM, Kreiter CD, Peterson MW. An evaluation of information-seeking behaviors of general pediatricians. Pediatrics. 2004;113(1):64–9.

Google Scholar 

Guo H, Na X, Li J. Qcorp: an annotated classification corpus of Chinese health questions. BMC Med Inform Decis Making. 2018;18(S–1):39–47. https://doi.org/10.1186/S12911-018-0593-Y.

Article  Google Scholar 

Wibowo H, Fuadi E, Nityasya M, Prasojo RE, Aji A. COPAL-ID: Indonesian Language Reasoning with Local Culture and Nuances. In: Duh K, Gomez H, Bethard S, editors. Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). Mexico City: Association for Computational Linguistics; 2024. pp. 1404–22. https://aclanthology.org/2024.naacl-long.77/. https://doi.org/10.18653/v1/2024.naacl-long.77.

Koto F, Mahendra R, Aisyah N, Baldwin T. Indoculture: exploring geographically influenced cultural commonsense reasoning across eleven Indonesian provinces. Trans Assoc Comput Linguist. 2024;12:1703–19. https://doi.org/10.1162/tacl_a_00726.

Article  Google Scholar 

Wibowo HA, Prawiro TA, Ihsan M, Aji AF, Prasojo RE, Mahendra R, et al. Semi-Supervised Low-Resource Style Transfer of Indonesian Informal to Formal Language with Iterative Forward-Translation. In: 2020 International Conference on Asian Language Processing (IALP). 2020. pp. 310–5. https://doi.org/10.1109/IALP51396.2020.9310459.

Barik AM, Mahendra R, Adriani M. Normalization of Indonesian-English Code-Mixed Twitter Data. In: Xu W, Ritter A, Baldwin T, Rahimi A, editors. Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019). Hong Kong: Association for Computational Linguistics; 2019. pp. 417–24. https://doi.org/10.18653/v1/D19-5554.

Ekakristi AS, Mahendra R, Adriani M. Finding Questions in Medical Forum Posts Using Sequence Labeling Approach. In: Gelbukh A, editor. Computational Linguistics and Intelligent Text Processing. Cham: Springer Nature Switzerland; 2023. p. 62–73.

Google Scholar 

Nurhayati S. Pencarian pertanyaan serupa pada forum konsultasi kesehatan online dengan pendekatan perolehan informasi [Bachelor’s thesis]. Depok: Faculty of Computer Science, Universitas Indonesia; 2019.

Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37–46.

Google Scholar 

Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

MATH  Google Scholar 

Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’16. New York: Association for Computing Machinery; 2016. pp. 785–94. https://doi.org/10.1145/2939672.2939785.

Vapnik VN. The Support Vector method. In: Gerstner W, Germond A, Hasler M, Nicoud JD, editors. Artificial Neural Networks – ICANN’97. Berlin: Springer; 1997. pp. 261–71.

Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In: Burstein J, Doran C, Solorio T, editors. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis: Association for Computational Linguistics; 2019. pp. 4171–86. https://aclanthology.org/N19-1423/. https://doi.org/10.18653/v1/N19-1423.

Wilie B, Vincentio K, Winata GI, Cahyawijaya S, Li X, Lim ZY, et al. IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding. In: Wong KF, Knight K, Wu H, editors. Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing. Suzhou: Association for Computational Linguistics; 2020. pp. 843–57. https://aclanthology.org/2020.aacl-main.85/. https://doi.org/10.18653/v1/2020.aacl-main.85.

Mahendra R, Hakim AN, Adriani M. Towards question identification from online healthcare consultation forum post in bahasa. In: 2017 International Conference on Asian Language Processing (IALP). 2017. pp. 399–402. https://doi.org/10.1109/IALP.2017.8300627.

Chawla N, Bowyer K, Hall L, Kegelmeyer W. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57. https://doi.org/10.1613/jair.953.

Article  MATH  Google Scholar 

He H, Bai Y, Garcia EA, Li S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). 2008. pp. 1322–8. https://doi.org/10.1109/IJCNN.2008.4633969.

Han H, Wang WY, Mao BH. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In: Huang DS, Zhang XP, Huang GB, editors. Advances in Intelligent Computing. Berlin: Springer; 2005. pp. 878–87.

Ribeiro MT, Singh S, Guestrin C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. New York: Association for Computing Machinery (ACM); 2016. pp. 1135–44.

Suwarningsih W, Supriana I, Purwarianti A. ImNER Indonesian medical named entity recognition. In: 2014 2nd International Conference on Technology, Informatics, Management, Engineering & Environment. 2014. pp. 184–8. https://doi.org/10.1109/TIME-E.2014.7011615.

Saputra IF, Mahendra R, Wicaksono AF. Keyphrases Extraction from User-Generated Contents in Healthcare Domain Using Long Short-Term Memory Networks. In: Demner-Fushman D, Cohen KB, Ananiadou S, Tsujii J, editors. Proceedings of the BioNLP 2018 workshop. Melbourne: Association for Computational Linguistics; 2018. pp. 28–34. https://doi.org/10.18653/v1/W18-2304.

Comments (0)

No login
gif