Hill AV, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. QJM. 1923;os-16(62):135–71. https://doi.org/10.1093/qjmed/os-16.62.135.
Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84.
INSCYD. Wout van Aert talks about Fatmax and vLamax. 2020.
Busca N. Proper science or hocus pocus? Pros and cons of using VLamax. Rouleur; 2022.
Mader A. Aussagekraft der Laktatleistungskurve in Kombination mit anaeroben Tests zur Bestimmung der Stoffwechselkapazität. In: Clasing D, Weicker H, D B, editors. Stellenwert der Laktatbestimmung in der Leistungsdiagnostik. Stuttgart: Gustav Fischer Verlag; 1994. p. 133–52.
Mader A. Eine Theorie zur Berechnung der Dynamik und des steady state von Phosphorylierungsszzustand und Stoffwechselaktivität der Muskelzelle als Folge des Energiebedarfs. Cologne1984.
Mader A. Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power output of the muscle cell. Eur J Appl Physiol. 2003;88(4–5):317–38.
Ekblom B. Counterpoint: maximal oxygen uptake is not limited by a central nervous system governor. J Appl Physiol. 2009;106(1):339–41.
Poole DC, Jones AM. Measurement of the maximum oxygen uptake \(\dot}_}\) max: \(\dot}_}\) peak is no longer acceptable. J Appl Physiol. 2017;122(4):997–1002. https://doi.org/10.1152/japplphysiol.01063.2016.
Taylor HL, Buskirk E, Henschel A. Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol. 1955;8(1):73–80. https://doi.org/10.1152/jappl.1955.8.1.73.
Article CAS PubMed Google Scholar
Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ. The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol. 2003;95(5):1901–7. https://doi.org/10.1152/japplphysiol.00024.2003.
Article CAS PubMed Google Scholar
Wang C, Taylor MJ, Stafford CD, Dang DS, Matarneh SK, Gerrard DE, et al. Analysis of phosphofructokinase-1 activity as affected by pH and ATP concentration. Sci Rep. 2024;14(1):21192. https://doi.org/10.1038/s41598-024-72028-4.
Article CAS PubMed PubMed Central Google Scholar
Langley JO, Porter MS. \(\dot\)Lamax: determining the optimal test duration for maximal lactate formation rate during all-out sprint cycle ergometry. Euro J Appl Physiol. 2024;124(10):3149–50. https://doi.org/10.1007/s00421-024-05507-1.
Meixner BJ, Nusser V, Koehler K, Sablain M, Boone J, Sperlich B. Relationship of peak capillary blood lactate accumulation and body composition in determining the mechanical energy equivalent of lactate during sprint cycling. Eur J Appl Physiol. 2024;124(11):3399–407. https://doi.org/10.1007/s00421-024-05529-9.
Article CAS PubMed PubMed Central Google Scholar
Pohl A, Schünemann F, Schaaf K, Yang WH, Heck H, Heine O, et al. Increased resting lactate levels and reduced carbohydrate intake cause νLa.max underestimation by reducing net lactate accumulation—a pilot study in young adults. Physiol Rep. 2024;12(16): e70020. https://doi.org/10.14814/phy2.70020.
Article CAS PubMed PubMed Central Google Scholar
Mavroudi M, Kabasakalis A, Petridou A, Mougios V. Blood lactate and maximal lactate accumulation rate at three sprint swimming distances in highly trained and elite swimmers. Sports (Basel). 2023. https://doi.org/10.3390/sports11040087.
Article PubMed PubMed Central Google Scholar
Quittmann OJ, Foitschik T, Vafa R, Freitag FJ, Sparmann N, Nolte S, et al. Is maximal lactate accumulation rate promising for improving 5000-m prediction in running? Int J Sports Med. 2023;44(4):268–79. https://doi.org/10.1055/a-1958-3876.
Heck H, Schulz H, Bartmus U. Diagnostics of anaerobic power and capacity. Eur J Sport Sci. 2003;3(3):1–23. https://doi.org/10.1080/17461390300073302.
Weber S. Berechnung leistungsbestimmender Parameter der metabolischen Aktivität auf zellulärer Ebene mittels fahrradergometrischer Untersuchungen. 2003.
Heck H, Bartmus U, Grabow V. Laktat: Stoffwechselgrundlagen, Leistungsdiagnostik, Trainingssteuerung. Berlin: Springer; 2022.
Lynch EM, Hansen H, Salay L, Cooper M, Timr S, Kollman JM, et al. Structural basis for allosteric regulation of human phosphofructokinase-1. Nat Commun. 2024;15(1):7323. https://doi.org/10.1038/s41467-024-51808-6.
Article CAS PubMed PubMed Central Google Scholar
Wackerhage H, Mueller K, Hoffmann U, Leyk D, Essfeld D, Zange J. Glycolytic ATP production estimated from 31P magnetic resonance spectroscopy measurements during ischemic exercise in vivo. Magma (New York, NY). 1996;4(3–4):151–5.
Shoubridge EA, Bland JL, Radda GK. Regulation of creatine kinase during steady-state isometric twitch contraction in rat skeletal muscle. Biochim Biophys Mol Cell Res. 1984;805(1):72–8. https://doi.org/10.1016/0167-4889(84)90038-7.
Berg JM, Tymoczko JL, Gatto GJ, Stryer L. Biochemistry, 8 edn. Freeman & Company; 2018.
Murgia M, Nogara L, Baraldo M, Reggiani C, Mann M, Schiaffino S. Protein profile of fiber types in human skeletal muscle: a single-fiber proteomics study. Skelet Muscle. 2021;11(1):24. https://doi.org/10.1186/s13395-021-00279-0.
Article CAS PubMed PubMed Central Google Scholar
Galvan-Alvarez V, Gallego-Selles A, Martinez-Canton M, Perez-Suarez I, Garcia-Gonzalez E, Martin-Rincon M, et al. Physiological and molecular predictors of cycling sprint performance. Scand J Med Sci Sports. 2024;34(1): e14545. https://doi.org/10.1111/sms.14545.
Vandewalle H, Péerès G, Monod H. Standard anaerobic exercise tests. Sports Med. 1987;4(4):268–89. https://doi.org/10.2165/00007256-198704040-00004.
Article CAS PubMed Google Scholar
Bar-Or O. The Wingate anaerobic test an update on methodology, reliability and validity. Sports Med. 1987;4(6):381–94. https://doi.org/10.2165/00007256-198704060-00001.
Article CAS PubMed Google Scholar
Mastalerz A, Johne M, Mróz A, Bojarczuk A, Stastny P, Petr M, et al. Changes of anaerobic power and lactate concentration following intense glycolytic efforts in elite and sub-elite 400-meter sprinters. J Hum Kinet. 2024;91(Spec Issue):165–74. https://doi.org/10.5114/jhk/186074.
Article PubMed PubMed Central Google Scholar
Wackerhage H. Contributions by the Cologne group to the development of lactate exercise testing and anaerobic threshold concepts in the 1970s and 1980s. J Physiol. 2021. https://doi.org/10.1113/JP281142.
Hollmann W. Höchst- und Dauerleistungsfähigkeit des Sportlers. Munich: Barth; 1963.
Hauser T, Adam J, Schulz H. Comparison of calculated and experimental power in maximal lactate-steady state during cycling. Theor Biol Med Model. 2014;11(1):1. https://doi.org/10.1186/1742-4682-11-25.
Adam J, Öhmichen M, Öhmichen E, Rother J, Müller UM, Hauser T, et al. Reliability of the calculated maximal lactate steady state in amateur cyclists. Biol Sport. 2015;32(2):97–102. https://doi.org/10.5604/20831862.1134311.
Article CAS PubMed PubMed Central Google Scholar
Quittmann OJ, Abel T, Zeller S, Foitschik T, Strüder HK. Lactate kinetics in handcycling under various exercise modalities and their relationship to performance measures in able-bodied participants. Eur J Appl Physiol. 2018;118(7):1493–505. https://doi.org/10.1007/s00421-018-3879-y.
Article CAS PubMed Google Scholar
Nitzsche N, Baumgärtel L, Schulz H. Comparison of maximum lactate formation rates in ergometer sprint and maximum strength loads. Dtsch Z Sportmed. 2018;69(1):13–8.
Hommel J, Öhmichen S, Rudolph UM, Hauser T, Schulz H. Effects of six-week sprint interval or endurance training on calculated power in maximal lactate steady state. Biol Sport. 2019;36(1):47–54. https://doi.org/10.5114/biolsport.2018.78906.
Quittmann OJ, Appelhans D, Abel T, Strüder HK. Evaluation of a sport-specific field test to determine maximal lactate accumulation rate and sprint performance parameters in running. J Sci Med Sport. 2020;23(1):27–34. https://doi.org/10.1016/j.jsams.2019.08.013.
Nitzsche N, Lenz JC, Voronoi P, Schulz H. Adaption of maximal glycolysis rate after resistance exercise with different volume load. Sports Med Int Open. 2020;4(2):E39-e44. https://doi.org/10.1055/a-1146-4236.
Comments (0)