Is the Lamax for Glycolysis What the $$\dot{V}{\text{O}}_{{2}}$$ max is for Oxidative Phosphorylation?

Hill AV, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. QJM. 1923;os-16(62):135–71. https://doi.org/10.1093/qjmed/os-16.62.135.

Article  Google Scholar 

Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84.

PubMed  Google Scholar 

INSCYD. Wout van Aert talks about Fatmax and vLamax. 2020.

Busca N. Proper science or hocus pocus? Pros and cons of using VLamax. Rouleur; 2022.

Mader A. Aussagekraft der Laktatleistungskurve in Kombination mit anaeroben Tests zur Bestimmung der Stoffwechselkapazität. In: Clasing D, Weicker H, D B, editors. Stellenwert der Laktatbestimmung in der Leistungsdiagnostik. Stuttgart: Gustav Fischer Verlag; 1994. p. 133–52.

Mader A. Eine Theorie zur Berechnung der Dynamik und des steady state von Phosphorylierungsszzustand und Stoffwechselaktivität der Muskelzelle als Folge des Energiebedarfs. Cologne1984.

Mader A. Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power output of the muscle cell. Eur J Appl Physiol. 2003;88(4–5):317–38.

CAS  PubMed  Google Scholar 

Ekblom B. Counterpoint: maximal oxygen uptake is not limited by a central nervous system governor. J Appl Physiol. 2009;106(1):339–41.

PubMed  Google Scholar 

Poole DC, Jones AM. Measurement of the maximum oxygen uptake \(\dot}_}\) max: \(\dot}_}\) peak is no longer acceptable. J Appl Physiol. 2017;122(4):997–1002. https://doi.org/10.1152/japplphysiol.01063.2016.

Taylor HL, Buskirk E, Henschel A. Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol. 1955;8(1):73–80. https://doi.org/10.1152/jappl.1955.8.1.73.

Article  CAS  PubMed  Google Scholar 

Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ. The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol. 2003;95(5):1901–7. https://doi.org/10.1152/japplphysiol.00024.2003.

Article  CAS  PubMed  Google Scholar 

Wang C, Taylor MJ, Stafford CD, Dang DS, Matarneh SK, Gerrard DE, et al. Analysis of phosphofructokinase-1 activity as affected by pH and ATP concentration. Sci Rep. 2024;14(1):21192. https://doi.org/10.1038/s41598-024-72028-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langley JO, Porter MS. \(\dot\)Lamax: determining the optimal test duration for maximal lactate formation rate during all-out sprint cycle ergometry. Euro J Appl Physiol. 2024;124(10):3149–50. https://doi.org/10.1007/s00421-024-05507-1.

Meixner BJ, Nusser V, Koehler K, Sablain M, Boone J, Sperlich B. Relationship of peak capillary blood lactate accumulation and body composition in determining the mechanical energy equivalent of lactate during sprint cycling. Eur J Appl Physiol. 2024;124(11):3399–407. https://doi.org/10.1007/s00421-024-05529-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pohl A, Schünemann F, Schaaf K, Yang WH, Heck H, Heine O, et al. Increased resting lactate levels and reduced carbohydrate intake cause νLa.max underestimation by reducing net lactate accumulation—a pilot study in young adults. Physiol Rep. 2024;12(16): e70020. https://doi.org/10.14814/phy2.70020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mavroudi M, Kabasakalis A, Petridou A, Mougios V. Blood lactate and maximal lactate accumulation rate at three sprint swimming distances in highly trained and elite swimmers. Sports (Basel). 2023. https://doi.org/10.3390/sports11040087.

Article  PubMed  PubMed Central  Google Scholar 

Quittmann OJ, Foitschik T, Vafa R, Freitag FJ, Sparmann N, Nolte S, et al. Is maximal lactate accumulation rate promising for improving 5000-m prediction in running? Int J Sports Med. 2023;44(4):268–79. https://doi.org/10.1055/a-1958-3876.

Article  PubMed  Google Scholar 

Heck H, Schulz H, Bartmus U. Diagnostics of anaerobic power and capacity. Eur J Sport Sci. 2003;3(3):1–23. https://doi.org/10.1080/17461390300073302.

Article  Google Scholar 

Weber S. Berechnung leistungsbestimmender Parameter der metabolischen Aktivität auf zellulärer Ebene mittels fahrradergometrischer Untersuchungen. 2003.

Heck H, Bartmus U, Grabow V. Laktat: Stoffwechselgrundlagen, Leistungsdiagnostik, Trainingssteuerung. Berlin: Springer; 2022.

Google Scholar 

Lynch EM, Hansen H, Salay L, Cooper M, Timr S, Kollman JM, et al. Structural basis for allosteric regulation of human phosphofructokinase-1. Nat Commun. 2024;15(1):7323. https://doi.org/10.1038/s41467-024-51808-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wackerhage H, Mueller K, Hoffmann U, Leyk D, Essfeld D, Zange J. Glycolytic ATP production estimated from 31P magnetic resonance spectroscopy measurements during ischemic exercise in vivo. Magma (New York, NY). 1996;4(3–4):151–5.

CAS  Google Scholar 

Shoubridge EA, Bland JL, Radda GK. Regulation of creatine kinase during steady-state isometric twitch contraction in rat skeletal muscle. Biochim Biophys Mol Cell Res. 1984;805(1):72–8. https://doi.org/10.1016/0167-4889(84)90038-7.

Article  CAS  Google Scholar 

Berg JM, Tymoczko JL, Gatto GJ, Stryer L. Biochemistry, 8 edn. Freeman & Company; 2018.

Murgia M, Nogara L, Baraldo M, Reggiani C, Mann M, Schiaffino S. Protein profile of fiber types in human skeletal muscle: a single-fiber proteomics study. Skelet Muscle. 2021;11(1):24. https://doi.org/10.1186/s13395-021-00279-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galvan-Alvarez V, Gallego-Selles A, Martinez-Canton M, Perez-Suarez I, Garcia-Gonzalez E, Martin-Rincon M, et al. Physiological and molecular predictors of cycling sprint performance. Scand J Med Sci Sports. 2024;34(1): e14545. https://doi.org/10.1111/sms.14545.

Article  PubMed  Google Scholar 

Vandewalle H, Péerès G, Monod H. Standard anaerobic exercise tests. Sports Med. 1987;4(4):268–89. https://doi.org/10.2165/00007256-198704040-00004.

Article  CAS  PubMed  Google Scholar 

Bar-Or O. The Wingate anaerobic test an update on methodology, reliability and validity. Sports Med. 1987;4(6):381–94. https://doi.org/10.2165/00007256-198704060-00001.

Article  CAS  PubMed  Google Scholar 

Mastalerz A, Johne M, Mróz A, Bojarczuk A, Stastny P, Petr M, et al. Changes of anaerobic power and lactate concentration following intense glycolytic efforts in elite and sub-elite 400-meter sprinters. J Hum Kinet. 2024;91(Spec Issue):165–74. https://doi.org/10.5114/jhk/186074.

Article  PubMed  PubMed Central  Google Scholar 

Wackerhage H. Contributions by the Cologne group to the development of lactate exercise testing and anaerobic threshold concepts in the 1970s and 1980s. J Physiol. 2021. https://doi.org/10.1113/JP281142.

Article  PubMed  Google Scholar 

Hollmann W. Höchst- und Dauerleistungsfähigkeit des Sportlers. Munich: Barth; 1963.

Google Scholar 

Hauser T, Adam J, Schulz H. Comparison of calculated and experimental power in maximal lactate-steady state during cycling. Theor Biol Med Model. 2014;11(1):1. https://doi.org/10.1186/1742-4682-11-25.

Article  CAS  Google Scholar 

Adam J, Öhmichen M, Öhmichen E, Rother J, Müller UM, Hauser T, et al. Reliability of the calculated maximal lactate steady state in amateur cyclists. Biol Sport. 2015;32(2):97–102. https://doi.org/10.5604/20831862.1134311.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quittmann OJ, Abel T, Zeller S, Foitschik T, Strüder HK. Lactate kinetics in handcycling under various exercise modalities and their relationship to performance measures in able-bodied participants. Eur J Appl Physiol. 2018;118(7):1493–505. https://doi.org/10.1007/s00421-018-3879-y.

Article  CAS  PubMed  Google Scholar 

Nitzsche N, Baumgärtel L, Schulz H. Comparison of maximum lactate formation rates in ergometer sprint and maximum strength loads. Dtsch Z Sportmed. 2018;69(1):13–8.

Google Scholar 

Hommel J, Öhmichen S, Rudolph UM, Hauser T, Schulz H. Effects of six-week sprint interval or endurance training on calculated power in maximal lactate steady state. Biol Sport. 2019;36(1):47–54. https://doi.org/10.5114/biolsport.2018.78906.

Article  PubMed  Google Scholar 

Quittmann OJ, Appelhans D, Abel T, Strüder HK. Evaluation of a sport-specific field test to determine maximal lactate accumulation rate and sprint performance parameters in running. J Sci Med Sport. 2020;23(1):27–34. https://doi.org/10.1016/j.jsams.2019.08.013.

Article  PubMed  Google Scholar 

Nitzsche N, Lenz JC, Voronoi P, Schulz H. Adaption of maximal glycolysis rate after resistance exercise with different volume load. Sports Med Int Open. 2020;4(2):E39-e44. https://doi.org/10.1055/a-1146-4236.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif