The Natural History of Bone Stress Injuries in Athletes: From Inception to Resolution

Wentz L, Liu P, Haymes E, Ilich JZ. Females have a greater incidence of stress fractures than males in both military and athletic populations: a systemic review. Mil Med. 2011;176(4):420–30.

PubMed  Google Scholar 

Jacobsson J, Timpka T. Classification of prevention in sports medicine and epidemiology. Sports Med. 2015;45(11):1483–7.

PubMed  Google Scholar 

Ruddick GK, Lovell GA, Drew MK, Fallon KE. Epidemiology of bone stress injuries in Australian high performance athletes: a retrospective cohort study. J Sci Med Sport. 2019;22(10):1114–8.

PubMed  Google Scholar 

Trease L, Wilkie K, Lovell G, Drew M, Hooper I. Epidemiology of injury and illness in 153 Australian international-level rowers over eight international seasons. Br J Sports Med. 2020;54:1288–93.

PubMed  Google Scholar 

Changstrom BG, Brou L, Khodaee M, Braund C, Dawn CR. Epidemiology of stress fracture injuries among US high school athletes, 2005–2006 through 2012–2013. Am J Sports Med. 2015;43(1):26–33.

PubMed  Google Scholar 

Rizzone KH, Ackerman KE, Roos KG, Dompier TP, Kerr ZY. The epidemiology of stress fractures in collegiate student-athletes, 2004–2005 through 2013–2014 academic years. J Athl Train. 2017;52:966–75.

PubMed  PubMed Central  Google Scholar 

Hoenig T, Ackerman KE, Beck BR, Bouxsein ML, Burr DB, Hollander K, et al. Bone stress injuries. Nat Rev. 2022;8(26):1–20.

Google Scholar 

Kelly S, Waring A, Stone B, Pollock N. Epidemiology of bone injuries in elite athletics: a prospective 9-year cohort study. Phys Ther Sport. 2024;66:67–75.

PubMed  Google Scholar 

Eales B, Jones N, Saw A, Obst A, Smith M, Kountouris A, et al. Lumbar bone stress injuries in elite Australian cricket players: a comprehensive case series. J Sci Med Sport. 2022;25:S79–80.

Google Scholar 

Wright AA, Taylor JB, Ford KR, Siska L, Smoliga JM. Risk factors associated with lower extremity stress fractures in runners: a systematic review with meta-analysis. Br J Sports Med. 2015;49(23):1517–23.

PubMed  Google Scholar 

Asano L, Duarte A, Silva A. Stress fractures in the foot and ankle of athletes. Rev Assoc Méd Bras. 2014;60(6):512–7.

CAS  PubMed  Google Scholar 

Caesar BC, McCollum GA, Elliot R, Williams A, Calder JDF. Stress fractures of the tibia and medial malleolus. Foot Ankle Clin. 2013;18(2):339–55.

PubMed  Google Scholar 

Joy EA, Campbell D. Stress fractures in the female athlete. Curr Sports Med Rep. 2005;4(6):323–8.

PubMed  Google Scholar 

Hoenig T, Eissele J, Strahl A, Popp KL, Stürznickel J, Ackerman KE, et al. Return to sport following low-risk and high-risk bone stress injuries: a systematic review and meta-analysis. Br J Sports Med. 2023;0:1–8.

Google Scholar 

Crunkhorn ML, Toohey LA, Charlton P, Drew M, Watson K, Etxebarria N. Injury incidence and prevalence in elite short-course triathletes: a 4-year prospective study. Br J Sports Med. 2024;58:470–6.

PubMed  Google Scholar 

Guevara SA, Crunkhorn ML, Drew M, Waddington G, Périard JD, Etxebarria N, et al. Injury and illness in short-course triathletes: a systematic review. J Sport Health Sci. 2023;13(2):172–85.

PubMed  PubMed Central  Google Scholar 

Kountouris A, Sims K, Beakley D, Rotstein A, Orchard J, Cook J. Bone marrow oedema on MRI is associated with increased risk of lumbar stress fracture in junior cricket fast bowlers. J Sci Med Sport. 2017;20S:40–2.

Google Scholar 

Myrick KM, Myrick SA, Ezomo O. Ulnar stress fracture in a softball player. Clin Case Rep. 2020;8:1547–52.

PubMed  PubMed Central  Google Scholar 

Silva RT, Hartmann LG, de Souza Laurino CF. Stress reaction of the humerus in tennis players. Br J Sports Med. 2007;41:824–6.

PubMed  PubMed Central  Google Scholar 

Hollander K, Rahlf AL, Wilke J, Edler C, Steib S, Junge A, et al. Sex-specific differences in running injuries: a systematic review with meta-analysis and meta-regression. Sports Med. 2021;51:1011–39.

PubMed  PubMed Central  Google Scholar 

Rauh MJ, Barrack M, Nichols JF. Associations between the female athlete triad and injury among high school runners. Int J Sports Phys Ther. 2014;9:948–58.

PubMed  PubMed Central  Google Scholar 

Tenforde AS, Carlson JL, Chang A, Sainani KL, Shultz R, Kim JH, et al. Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Sports Med. 2017;45:302–10.

Google Scholar 

Ackerman KE, Cano Sokoloff N, De Nardo MG, Clarke HM, Lee H, Misra M. Fractures in relation to menstrual status and bone parameters in young athletes. Med Sci Sports Exer. 2015;47(8):1577–86.

Google Scholar 

Prather H, Hunt D, McKeon K, Simpson S, Meyer EB, Yemm T, et al. Are elite female soccer athletes at risk for disordered eating attitudes, menstrual dysfunction, and stress fractures? PM R. 2016;8(3):208–13.

PubMed  Google Scholar 

Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, et al. The IOC consensus statement: beyond the Female Athlete Triad—relative energy deficiency in sport (RED-S). Br J Sports. 2014;48:491–7.

Google Scholar 

Nose-Ogura S, Yoshino O, Dohi M, Kigawa M, Harada M, Hiraike O, et al. Risk factors of stress fractures due to the female athlete triad: differences in teens and twenties. Scand J Med Sci Sports. 2019;29(10):1501–10.

PubMed  Google Scholar 

Tenforde AS, Fredericson M, Sayres LC, Cutti P, Sainani KL. Identifying sex-specific risk factors for low bone mineral density in adolescent runners. Am J Sports Med. 2015;43(6):1494–504.

PubMed  Google Scholar 

De Souza MJ, Williams NI, Nattiv A, Joy E, Misra M, Loucks AB, et al. Misunderstanding the Female Athlete Triad: refuting the IOC Consensus Statement on Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(20):1461–5.

PubMed  Google Scholar 

Welck MJ, Hayes T, Pastides P, Khan W, Rudge B. Stress fractures of the foot and ankle. Injury. 2017;48(8):1722–6.

CAS  PubMed  Google Scholar 

Barrack MT, Fredericson M, Tenforde AS, Nattiv A. Evidence of a cumulative effect for risk factors predicting low bone mass among male adolescent athletes. Br J Sports Med. 2017;51:200–5.

PubMed  Google Scholar 

Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauth MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.

PubMed  Google Scholar 

Field AE, Gordon CM, Pierce LM, Ramappa A, Kocher MS. Prospective study of physical activity and risk of developing a stress fracture among preadolescent and adolescent girls. Arch Pediatr Adolesc Med. 2011;165:723–8.

PubMed  PubMed Central  Google Scholar 

Kenneally M, Casado A, Gomez-Ezeiza J, Santos-Concejero J. Training characteristics of a World Championship 5000-m finalist and multiple continental record holder over the year leading to a World Championship final. Sports Physiol Perform. 2021;17(1):142–6.

Google Scholar 

Tjelta LI, Enoksen E. Training characteristics of male junior cross country and track runners on European top level. Int J Sports Sci Coach. 2010;5(2):193–203.

Google Scholar 

Last JM. Dictionary of epidemiology. New York: Oxford University Press; 1988.

Porta M. A Dictionary of epidemiology. 6th ed. Oxford: Oxford University Press; 2014.

Google Scholar 

Centers for Disease Control and Prevention. Principles of epidemiology. 2nd ed. Atlanta: U.S. Department of Health and Human Services; 1992.

Google Scholar 

Burns J, Keenan A-M, Redmond AC. Factors associated with triathlon-related overuse injuries. J Orthop Sports Phys Ther. 2003;33(4):177–84.

PubMed  Google Scholar 

McHardy A, Pollard H, Fernandez M. Triathlon injuries: a review of the literature and discussion of potential injury mechanisms. Clin Chiropr. 2006;9(3):129–38.

Google Scholar 

Vleck VE, Bentley DJ, Millet GP, Cochrane T. Triathlon event distance specialization: training and injury effects. J Strength Cond Res. 2010;24(1):30–6.

PubMed  Google Scholar 

Windt J, Gabbett TJ. How do training and competition workloads relate to injury? The workload—injury aetiology model. Br J Sports Med. 2017;51:428–35.

PubMed  Google Scholar 

Olivier B, Taljaard T, Burger E, Brukner P, Orchard J, Gray J, et al. Which extrinsic and intrinsic factors are associated with non-contact injuries in adult cricket fast bowlers? Sports Med. 2016;46:79–101.

PubMed  Google Scholar 

Kountouris A, Sims K, Beakley D, Saw AE, Orchard J, Rotstein A, et al. MRI bone marrow oedema precedes lumbar bone stress injury diagnosis in junior elite cricket fast bowlers. Br J Sports Med. 2019;53:1236–9.

PubMed  Google Scholar 

Meeuwisse WH, Tyreman H, Hagel B, Emery C. A dynamic model of etiology in sport injury: the recursive nature of risk and causation. Clin J Sport Med. 2007;17:215–9.

PubMed  Google Scholar 

Bennell KL, Malcolm SA, Thomas SA, Wark JD, Brukner PD. The incidence and distribution of stress fractures in competitive track and field athletes. A twelve-month prospective study. Am J Sports Med. 1996;24:211–7.

CAS  PubMed  Google Scholar 

Pepper M, Akuthota V, McCarty EC. The pathophysiology of stress fractures. Clin Sports Med. 2006;25(1):1–16.

PubMed  Google Scholar 

DiFiori JP, Benjamin HJ, Brenner JS, Gregory A, Jayanthi N, Landry GL, et al. Overuse injuries and burnout in youthsports: a position statement from the American Medical Society for Sports Medicine. Br J Sports Med. 2014;48:287–8.

PubMed  Google Scholar 

Comments (0)

No login
gif