Erythrocyte Glycolytic and Redox Metabolism Affects Muscle Oxygenation and Exercise Performance: A Randomized Double-Blind Crossover Study in Men

Adair GS, Bock AV, Field H. The hemoglobin system: vi. The oxygen dissociation curve of hemoglobin. J Biol Chem. 1925;63:529–45.

CAS  Google Scholar 

Bohr C, Hasselbalch K, Krogh A. Ueber einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt1. Skandinavisches Archiv Für Physiologie. 1904;16:402–12.

Google Scholar 

Christiansen J, Douglas CG, Haldane JS. The absorption and dissociation of carbon dioxide by human blood. J Physiol. 1914;48:244–71.

CAS  PubMed  PubMed Central  Google Scholar 

Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol. 1910;40:i–vii.

Google Scholar 

Minakami S, Suzuki C, Saito T, Yoshikawa H. Studies on erythrocyte glycolysis i. Determination of the glycolytic intermediates in human erythrocytes. J Biochem. 1965;58:543–50.

CAS  PubMed  Google Scholar 

Rapoport S. The regulation of glycolysis in mammalian erythrocytes. Essays Biochem. 1968;4:69–103.

CAS  PubMed  Google Scholar 

Rapoport S, Luebering J. The formation of 2,3-diphosphoglycerate in rabbit erythrocytes: the existence of a diphosphoglycerate mutase. J Biol Chem. 1950;183:507–16.

CAS  Google Scholar 

Latypova L, Barshtein G, Puzenko A, Poluektov Y, Anashkina A, Petrushanko I, et al. Oxygenation state of hemoglobin defines dynamics of water molecules in its vicinity. J Chem Phys. 2020;153: 135101.

CAS  PubMed  Google Scholar 

Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, et al. Erythrocyte metabolism. Acta Physiol (Oxf). 2024;240: e14081.

CAS  PubMed  Google Scholar 

Mairbäurl H. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Front Physiol. 2013;4:7059.

Google Scholar 

Webb KL, Gorman EK, Morkeberg OH, Klassen SA, Regimbal RJ, Wiggins CC, et al. The relationship between hemoglobin and VO2max: a systematic review and meta-analysis. PLoS One. 2023;18: e0292835.

CAS  PubMed  PubMed Central  Google Scholar 

Webb KL, Joyner MJ, Wiggins CC, Secomb TW, Roy TK. The dependence of maximum oxygen uptake and utilization (V̇O2max) on hemoglobin-oxygen affinity and altitude. Physiol Rep. 2023;11: e15806.

CAS  PubMed  PubMed Central  Google Scholar 

Caswell AM, Tripp TR, Kontro H, Edgett BA, Wiley JP, Lun V, et al. The influence of sex, hemoglobin mass, and skeletal muscle characteristics on cycling critical power. J Appl Physiol. 2024;137:10–22.

CAS  PubMed  Google Scholar 

Lundby C, Montero D, Joyner M. Biology of VO2max: looking under the physiology lamp. Acta Physiol. 2017;220:218–28.

CAS  Google Scholar 

Adami PE, Koutlianos N, Baggish A, Bermon S, Cavarretta E, Deligiannis A, et al. Cardiovascular effects of doping substances, commonly prescribed medications and ergogenic aids in relation to sports: a position statement of the sport cardiology and exercise nucleus of the European Association of Preventive Cardiology. Eur J Prev Cardiol. 2022;29:559–75.

PubMed  Google Scholar 

Breenfeldt Andersen A, Nordsborg NB, Bonne TC, Bejder J. Contemporary blood doping—performance, mechanism, and detection. Scand J Med Sci Sports. 2024;34: e14243.

PubMed  Google Scholar 

Grau M, Zollmann E, Bros J, Seeger B, Dietz T, Noriega Ureña JA, et al. Autologous blood doping induced changes in red blood cell rheologic parameters, RBC age distribution, and performance. Biology (Basel). 2022;11:647.

CAS  PubMed  Google Scholar 

Ryan BJ, Charkoudian N, Joyner MJ. Human performance augmentation: the importance of integrative physiological quantification. J Physiol. 2023;601:407–16.

CAS  PubMed  Google Scholar 

Diaz-Canestro C, Siebenmann C, Montero D. Blood oxygen carrying capacity determines cardiorespiratory fitness in middle-age and older women and men. Med Sci Sports Exerc. 2021;53:2274–82.

CAS  PubMed  Google Scholar 

Skattebo Ø, Johansen ES, Capelli C, Hallén J. Effects of 150- and 450-mL Acute blood losses on maximal oxygen uptake and exercise capacity. Med Sci Sports Exerc. 2021;53:1729–38.

CAS  PubMed  Google Scholar 

Hota M, Barber JL, Ruiz-Ramie JJ, Schwartz CS, Lam DTUH, Rao P, et al. Omics-driven investigation of the biology underlying intrinsic submaximal working capacity and its trainability. Physiol Genomics. 2023;55:517–43.

Google Scholar 

Poole DC, Pittman RN, Musch TI, Østergaard L. August Krogh’s theory of muscle microvascular control and oxygen delivery: a paradigm shift based on new data. J Physiol. 2020;598:4473–507.

CAS  PubMed  Google Scholar 

Poole DC, Behnke BJ, Musch TI. The role of vascular function on exercise capacity in health and disease. J Physiol. 2021;599:889–910.

CAS  PubMed  Google Scholar 

Poole DC, Musch TI, Colburn TD. Oxygen flux from capillary to mitochondria: integration of contemporary discoveries. Eur J Appl Physiol. 2022;122:7–28.

CAS  PubMed  Google Scholar 

Poole DC, Musch TI. Capillary-mitochondrial oxygen transport in muscle: paradigm shifts. Function. 2023;zqad013.

Nemkov T, Skinner SC, Nader E, Stefanoni D, Robert M, Cendali F, et al. Acute cycling exercise induces changes in red blood cell deformability and membrane lipid remodeling. Int J Mol Sci. 2021;22:896.

CAS  PubMed  PubMed Central  Google Scholar 

Mairbäurl H, Weber RE. Oxygen transport by hemoglobin. Compr Physiol. 2012;2:1463–89.

PubMed  Google Scholar 

Kattamis A. An energy booster for thalassaemic red blood cells. Lancet. 2022;400:470–1.

PubMed  Google Scholar 

Kung C, Hixon J, Kosinski PA, Cianchetta G, Histen G, Chen Y, et al. AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency. Blood. 2017;130:1347–56.

CAS  PubMed  PubMed Central  Google Scholar 

Kuo KHM, Layton DM, Lal A, Al-Samkari H, Bhatia J, Kosinski PA, et al. Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in adults with non-transfusion dependent α-thalassaemia or β-thalassaemia: an open-label, multicentre, phase 2 study. Lancet. 2022;400:493–501.

CAS  PubMed  Google Scholar 

Schroeder P, Fulzele K, Forsyth S, Ribadeneira MD, Guichard S, Wilker E, et al. Etavopivat, a pyruvate kinase activator in red blood cells, for the treatment of sickle cell disease. J Pharmacol Exp Ther. 2022;380:210–9.

CAS  PubMed  Google Scholar 

Tzounakas VL, Anastasiadi AT, Arvaniti V-Z, Lelli V, Fanelli G, Paronis EC, et al. Supplementation with uric and ascorbic acid protects stored red blood cells through enhancement of non-enzymatic antioxidant activity and metabolic rewiring. Redox Biol. 2022;57: 102477.

CAS  PubMed  PubMed Central  Google Scholar 

Möller MN, Orrico F, Villar SF, López AC, Silva N, Donzé M, et al. Oxidants and antioxidants in the redox biochemistry of human red blood cells. ACS Omega. 2022;8:147–68.

PubMed  PubMed Central  Google Scholar 

Raftos JE, Whillier S, Kuchel PW. Glutathione synthesis and turnover in the human erythrocyte: alignment of a model based on detailed enzyme kinetics with experimental data. J Biol Chem. 2010;285:23557–67.

CAS  PubMed  PubMed Central  Google Scholar 

Dumbill R, Rabcuka J, Fallon J, Knight S, Hunter J, Voyce D, et al. Impaired O2 unloading from stored blood results in diffusion-limited O2 release at tissues: evidence from human kidneys. Blood. 2023;143:721–33.

Google Scholar 

Rabcuka J, Blonski S, Meli A, Sowemimo-Coker S, Zaremba D, Stephenson D, et al. Metabolic reprogramming under hypoxic storage preserves faster oxygen unloading from stored red blood cells. Blood Adv. 2022;6:5415–28.

CAS  PubMed  PubMed Central  Google Scholar 

Grace RF. Pyruvate kinase activators for treatment of pyruvate kinase deficiency. Hematology. 2023;2023:97–106.

PubMed  PubMed Central  Google Scholar 

Anastasiadi AT, Stamoulis K, Papageorgiou EG, Lelli V, Rinalducci S, Papassideri IS, et al. The time-course linkage between hemolysis, redox, and metabolic parameters during red blood cell storage with or without uric acid and ascorbic acid supplementation. Front Aging. 2023;4:1161565.

PubMed  PubMed Central  Google Scholar 

D’Alessandro A, Gevi F, Zolla L. Red blood cell metabolism under prolonged anaerobic storage. Mol Biosyst. 2013;9:1196–209.

PubMed  Google Scholar 

D’Alessandro A, Anastasiadi AT, Tzounakas VL, Nemkov T, Reisz JA, Kriebardis AG, et al. Red blood cell metabolism in vivo and in vitro. Metabolites. 2023;13:793.

PubMed  PubMed Central  Google Scholar 

Rogers, Ge X, Brummet M, Lin X, Timm DD, d’Avignon A, et al. Quantifying dynamic range in red blood cell energetics: evidence of progressive energy failure during storage. Transfusion. 2021;61:1586–99.

CAS 

Comments (0)

No login
gif