Gillet R, Boubaker F, Hossu G, Thay A, Gillet P, Blum A, et al. Computed tomography bone imaging: pushing the boundaries in clinical practice. Semin Musculoskelet Radiol. 2023;27:397–410.
Bolbos RI, Zuo J, Banerjee S, Link TM, Benjamin Ma C, Li X, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3T. Osteoarthritis Cartilage. 2008;16:1150–9.
CAS PubMed PubMed Central Google Scholar
Weinstein RS, Hutson MS. Decreased trabecular width and increased trabecular spacing contribute to bone loss with aging. Bone. 1987;8:137–42.
Armas LAG, Akhter MP, Drincic A, Recker RR. Trabecular bone histomorphometry in humans with type 1 diabetes mellitus. Bone. 2012;50:91–6.
Klintström B, Henriksson L, Moreno R, Malusek A, Smedby Ö, Woisetschläger M, et al. Photon-counting detector CT and energy-integrating detector CT for trabecular bone microstructure analysis of cubic specimens from human radius. Eur Radiol Exp. 2022;6:31.
PubMed PubMed Central Google Scholar
Thomsen FSL, Horstmeier S, Niehoff JH, Peña JA, Borggrefe J. Effective spatial resolution of photon counting CT for imaging of trabecular structures is superior to conventional clinical CT and similar to high resolution peripheral CT. Invest Radiol. 2022;57:620–6.
du Plessis A, Broeckhoven C, Guelpa A, le Roux SG. Laboratory x-ray micro-computed tomography: a user guideline for biological samples. Gigascience. 2017;6:1–11.
PubMed PubMed Central Google Scholar
McCabe C, Sauer TJ, Zarei M, Segars WP, Samei E, Abadi E. A systematic assessment of photon-counting CT for bone mineral density and microarchitecture quantifications. Proc SPIE Int Soc Opt Eng. 2023;12463: 1246303.
PubMed PubMed Central Google Scholar
Peña JA, Klein L, Maier J, Damm T, Schlemmer H-P, Engelke K, et al. Dose-efficient assessment of trabecular microstructure using ultra-high-resolution photon-counting CT. Z Med Phys. 2022. https://doi.org/10.1016/j.zemedi.2022.04.001.
Article PubMed PubMed Central Google Scholar
Gondim Teixeira PA, Villani N, Ait Idir M, Germain E, Lombard C, Gillet R, et al. Ultra-high resolution computed tomography of joints: practical recommendations for acquisition protocol optimization. Quant Imaging Med Surg. 2021;11:4287–98.
PubMed PubMed Central Google Scholar
Inai R, Nakahara R, Morimitsu Y, Akagi N, Marukawa Y, Matsushita T, et al. Bone microarchitectural analysis using ultra-high-resolution CT in tiger vertebra and human tibia. Eur Radiol Exp. 2020;4:4.
PubMed PubMed Central Google Scholar
Shi G, Subramanian S, Cao Q, Demehri S, Siewerdsen JH, Zbijewski W. Application of a novel ultra-high resolution multi-detector CT in quantitative imaging of trabecular microstructure. Proc SPIE Int Soc Opt Eng. 2020;11317: 113171E.
PubMed PubMed Central Google Scholar
Boubaker F, Teixeira PAG, Hossu G, Douis N, Gillet P, Blum A, et al. In vivo depiction of cortical bone vascularization with ultra-high resolution-CT and deep learning algorithm reconstruction using osteoid osteoma as a model. Diagn Interv Imaging. 2024;105:26–32.
Puel U, Eliezer M, Boubaker F, Villani N, Assabah B, Hossu G, et al. Effect of matrix size and acquisition mode on image quality and radiation dose of ultra-high-resolution CT of the temporal bone: an anatomical study. Can Assoc Radiol J. 2024. https://doi.org/10.1177/08465371241234795.
Beysang A, Villani N, Boubaker F, Puel U, Eliezer M, Hossu G, et al. Ultra-high-resolution CT of the temporal bone: comparison between deep learning reconstruction and hybrid and model-based iterative reconstruction. Diagn Interv Imaging. 2024;105:233–42.
Domander R, Felder AA, Doube M. BoneJ2 - refactoring established research software. Wellcome Open Res. 2021. https://doi.org/10.12688/wellcomeopenres.16619.2.
Article PubMed PubMed Central Google Scholar
Benchoufi M, Matzner-Lober E, Molinari N, Jannot A-S, Soyer P. Interobserver agreement issues in radiology. Diagn Interv Imaging. 2020;101:639–41.
Kawalilak CE, Kontulainen SA, Amini MA, Lanovaz JL, Olszynski WP, Johnston JD. In vivo precision of three HR-pQCT-derived finite element models of the distal radius and tibia in postmenopausal women. BMC Musculoskelet Disord. 2016;17:389.
CAS PubMed PubMed Central Google Scholar
Barat M, Jannot A-S, Dohan A, Soyer P. How to report and compare quantitative variables in a radiology article. Diagn Interv Imaging. 2022;103:571–3.
Tsuji K, Kitamura M, Chiba K, Muta K, Yokota K, Okazaki N, et al. Comparison of bone microstructures via high-resolution peripheral quantitative computed tomography in patients with different stages of chronic kidney disease before and after starting hemodialysis. Ren Fail. 2022;44:381–91.
Mourad C, Gallego Manzano L, Viry A, Booij R, Oei EHG, Becce F, et al. Chances and challenges of photon-counting CT in musculoskeletal imaging. Skeletal Radiol. 2024;53:1889–902.
PubMed PubMed Central Google Scholar
Greffier J, Viry A, Robert A, Khorsi M, Si-Mohamed S. Photon-counting CT systems: a technical review of current clinical possibilities. Diagn Interv Imaging. 2025;106(2):53–9.
Boubaker F, Puel U, Eliezer M, Hossu G, Assabah B, Haioun K, et al. Radiation dose reduction and image quality improvement with ultra-high resolution temporal bone CT using deep learning-based reconstruction: an anatomical study. Diagn Interv Imaging. 2024;105:371–8.
Bacchetta J, Boutroy S, Vilayphiou N, Juillard L, Guebre-Egziabher F, Rognant N, et al. Early impairment of trabecular microarchitecture assessed with HR-pQCT in patients with stage II-IV chronic kidney disease. J Bone Miner Res. 2010;25:849–57.
Comments (0)