Dynamic analysis of lumbar spine cerebrospinal fluid flow during deep respiration using a modified time–spatial labeling inversion pulse: technical feasibility in a healthy volunteer

Wang DJ, Hua J, Cao D, Ho ML. Neurofluids and the glymphatic system: anatomy, physiology, and imaging. Br J Radiol. 2023. https://doi.org/10.1259/bjr.20230016.

Article  PubMed  PubMed Central  Google Scholar 

Mehta RI, Mehta RI. Understanding central nervous system fluid networks: historical perspectives and a revised model for clinical neurofluid imaging. NMR Biomed. 2024;37:1–21.

Google Scholar 

Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cellular and molecular life sciences : CMLS. 2021;78:2429–57.

PubMed  PubMed Central  Google Scholar 

Gutiérrez-Montes C, Coenen W, Vidorreta M, Sincomb S, Martínez-Bazán C, Sánchez AL, et al. Effect of normal breathing on the movement of CSF in the spinal subarachnoid space. AJNR Am J Neuroradiol. 2022;43:1369–74.

PubMed  PubMed Central  Google Scholar 

Marin-Sanabria EA, Sih IM, Tan KK, Tan JSH. Mobile cauda equina schwannomas. Singapore Med J. 2007;48:e53–6.

PubMed  Google Scholar 

Moon K, Filis AK, Cohen AR. Mobile spinal ependymoma. J Neurosurg Pediatr. 2010;5:85–8.

PubMed  Google Scholar 

Yamakuni R, Ishii S, Otani K, Seino S, Nikaido T, Watanabe K, et al. Cauda equina movements during the valsalva maneuver in patients with lumbar spinal stenosis: introducing a novel method for redundant nerve evaluations. Skeletal Radiol. 2025. https://doi.org/10.1007/s00256-025-04888-4.

Article  PubMed  Google Scholar 

Yamakuni R, Seino S, Ishii S, Ishikawa H, Kikori K, Ando T, et al. Lumbar intradural space reduction during the Valsalva maneuver observed using cine MRI and MR myelography: a single-case experimental study. Acta Neurochir. 2023;165:2111–20.

PubMed  Google Scholar 

Aktas G, Kollmeier JM, Joseph AA, Merboldt KD, Ludwig HC, Gärtner J, et al. Spinal CSF flow in response to forced thoracic and abdominal respiration. Fluids and barriers of the CNS. 2019;16:1–8.

Google Scholar 

Kollmeier JM, Gürbüz-Reiss L, Sahoo P, Badura S, Ellebracht B, Keck M, et al. Deep breathing couples CSF and venous flow dynamics. Sci Rep. 2022;12:2568.

PubMed  PubMed Central  Google Scholar 

Liu P, Owashi K, Monnier H, Metanbou S, Capel C, Balédent O. Validating the accuracy of real-time phase-contrast MRI and quantifying the effects of free breathing on cerebrospinal fluid dynamics. Fluids and barriers of the CNS. 2024;21:25.

PubMed  PubMed Central  Google Scholar 

Yamada S, Miyazaki M, Kanazawa H, Higashi M, Morohoshi Y, Bluml S, et al. Visualization of cerebrospinal fluid movement with spin labeling at MR imaging: preliminary results in normal and pathophysiologic conditions. Radiology. 2008;249:644–52.

PubMed  Google Scholar 

Yamada S. Cerebrospinal fluid physiology: visualization of cerebrospinal fluid dynamics using the magnetic resonance imaging Time-Spatial Inversion Pulse method. Croat Med J. 2014;55:337–46.

PubMed  PubMed Central  Google Scholar 

Yamada S, Miyazaki M, Yamashita Y, Ouyang C, Yui M, Nakahashi M, et al. Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids and barriers of the CNS. 2013;10:36.

PubMed  PubMed Central  Google Scholar 

Gleeson TG, Mwangi I, Horgan SJ, Cradock A, Fitzpatrick P, Murray JG. Steady-state free-precession (SSFP) cine MRI in distinguishing normal and bicuspid aortic valves. J Magn Reson Imaging. 2008;28:873–8.

PubMed  Google Scholar 

Katahira M, Fukushima K, Kiko T, Yamakuni R, Endo K, Yoshihisa A, et al. Prognostic significance of left atrial strain combined with left ventricular strain using cardiac magnetic resonance feature tracking in patients with heart failure with preserved ejection fraction. Heart Vessels. 2024. https://doi.org/10.1007/s00380-023-02351-9.

Article  PubMed  Google Scholar 

Takenaka K, Ohtsuka K, Kitazume Y, Nagahori M, Fujii T, Saito E, et al. Comparison of magnetic resonance and balloon enteroscopic examination of the small intestine in patients with Crohn”s disease. Gastroenterology. 2014;147:334-342.e3.

PubMed  Google Scholar 

Marusic I, Joseph DD, Mahesh K. Laminar and turbulent comparisons for channel flow and flow control. J Fluid Mech. 2007;570:467–77.

Google Scholar 

Laloui L, Rotta Loria AF. Analytical modelling of steady heat and mass transfers. Analysis and design of energy geostructures [internet]. Elsevier. 2020; 333–408. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128162231000084

Tachibana M, Iemoto Y. Steady laminar flow in the inlet region of rectangular ducts. Bulletin of JSME. 1981;24:1151–8.

Google Scholar 

Larsen DW, Teitelbaum GP, Norman D. Cerebrospinal fluid flow artifact a possible pitfall on fast-spin-echo MR imaging of the spine simulating intradural pathology. Clin Imaging. 1996;20:140–2.

PubMed  Google Scholar 

Sherman JL, Citrin CM, Gangarosa RE, Bowen BJ. The MR appearance of CSF pulsations in the spinal canal. AJNR Am J Neuroradiol. 1986;7:879–84.

PubMed  PubMed Central  Google Scholar 

Sahoo P, Kollmeier JM, Wenkel N, Badura S, Gärtner J, Frahm J, et al. CSF and venous blood flow from childhood to adulthood studied by real-time phase-contrast MRI. Childs Nerv Syst. 2024;40:1377–88.

PubMed  PubMed Central  Google Scholar 

Jaeger E, Sonnabend K, Schaarschmidt F, Maintz D, Weiss K, Bunck AC. Compressed-sensing accelerated 4D flow MRI of cerebrospinal fluid dynamics. Fluids barriers CNS [Internet]. 2020 [cited 2025 Jul 13];17. Available from: https://fluidsbarrierscns.biomedcentral.com/articles/10.1186/s12987-020-00206-3

Ono A, Suetsuna F, Irie T, Yokoyama T, Numasawa T, Wada K, et al. Clinical significance of the redundant nerve roots of the cauda equina documented on magnetic resonance imaging. J Neurosurg Spine. 2007;7:27–32.

PubMed  Google Scholar 

Comments (0)

No login
gif