Crowe DL, Hacia JG, Hsieh CL, Sinha UK, Rice H. Molecular pathology of head and neck cancer. Histol Histopathol. 2002;17:909–14.
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: Cancer J Clin. 2011;61:69–90.
Wang B, Zhang S, Yue K, Wang XD. The recurrence and survival of oral squamous cell carcinoma: a report of 275 cases. Chin J Cancer. 2013;32:614–8.
PubMed PubMed Central Google Scholar
Noguti J, De Moura CF, De Jesus GP, Da Silva VH, Hossaka TA, Oshima CT, Ribeiro DA. Metastasis from oral cancer: an overview. Cancer Genomics Proteomics. 2012;9:329–35.
Patel RS, Dirven R, Clark JR, Swinson BD, Gao K, O’Brien CJ. The prognostic impact of extent of bone invasion and extent of bone resection in oral carcinoma. Laryngoscope. 2008;118:780–5.
Noorlag R, van Kempen PM, Stegeman I, Koole R, van Es RJ, Willems SM. The diagnostic value of 11q13 amplification and protein expression in the detection of nodal metastasis from oral squamous cell carcinoma: a systematic review and meta-analysis. Virchows Archiv: Int J Pathol. 2015;466:363–73.
Liao CT, Lee LY, Huang SF, Chen IH, Kang CJ, Lin CY, Fan KH, Wang HM, Ng SH, Yen TC. Outcome analysis of patients with oral cavity cancer and extracapsular spread in neck lymph nodes. Int J Radiat Oncol Biol Phys. 2011;81:930–7.
Siriwardena B, Karunathilaka H, Kumarasiri PVR, Tilakaratne WM. Impact of histological and molecular parameters on prognosis of oral squamous cell carcinoma: analysis of 290 cases. Biomed Res Int. 2020;2020:2059240.
CAS PubMed PubMed Central Google Scholar
Jia B, Zhang S, Wu S, Zhu Q, Li W. MiR-770 promotes oral squamous cell carcinoma migration and invasion by regulating the Sirt7/Smad4 pathway. IUBMB Life. 2021;73:264–72.
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.
Parkins EV, Gross C. Small differences and big changes: the many variables of MicroRNA expression and function in the brain. J Neurosci: Off J Soc Neurosci. 2024;44:e0365242024.
Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, Tavakol-Afshari J. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomed & Pharmacotherapy = Biomed & Pharmacotherapie. 2024;177:116899.
Mustafov D, Ahmad MS, Serrano A, Braoudaki M, Siddiqui SS. MicroRNA:Siglec crosstalk in cancer progression. Curr Opin Chem Biol. 2024;81: 102502.
Dioguardi M, Spirito F, Iacovelli G, Sovereto D, Laneve E, Laino L, Caloro GA, Nabi AQ, Ballini A, Lo Muzio L, Troiano G. The potential microRNA prognostic signature in HNSCCs: a systematic review. Non-coding RNA. 2023;9:54.
CAS PubMed PubMed Central Google Scholar
Malekjafarian SM, Mohtasham N, Mirhashemi M, Sadeghi M, Arab F, Mohajertehran F. Metastasis and cell proliferation inhibition by microRNAs and its potential therapeutic applications in OSCC: a systematic review. Pathol Res Pract. 2024;262: 155532.
Na C, Li X, Zhang J, Han L, Li Y, Zhang H. miR-107 targets TRIAP1 to regulate oral squamous cell carcinoma proliferation and migration. Int J Clin Exp Pathol. 2019;12:1820–5.
CAS PubMed PubMed Central Google Scholar
Liu KYP, Zhu SY, Brooks D, Bowlby R, Durham JS, Ma Y, Moore RA, Mungall AJ, Jones S, Poh CF. Tumor microRNA profile and prognostic value for lymph node metastasis in oral squamous cell carcinoma patients. Oncotarget. 2020;11:2204–15.
PubMed PubMed Central Google Scholar
Guo J, Shou C, Meng L, Jiang B, Dong B, Yao L, Xie Y, Zhang J, Chen Y, Budman DR, Shi YE. Neuronal protein synuclein gamma predicts poor clinical outcome in breast cancer. Int J Cancer. 2007;121:1296–305.
Liu C, Dong B, Lu A, Qu L, Xing X, Meng L, Wu J, Eric Shi Y, Shou C. Synuclein gamma predicts poor clinical outcome in colon cancer with normal levels of carcinoembryonic antigen. BMC Cancer. 2010;10:359.
PubMed PubMed Central Google Scholar
Pan Y, Zheng Y, Yang J, Wei Y, Wu H, Liu S, Yin A, Hu J, Zeng Y. A new biomarker for the early diagnosis of gastric cancer: gastric juice- and serum-derived SNCG. Future Oncol (London, England). 2022;18:3179–90.
Zhang J, Liu XH, Li C, Wu XX, Chen YL, Li WW, Li X, Gong F, Tang Q, Jiang D. Sncg promotes the progression and metastasis of high-grade serous ovarian cancer via targeting the PI3K/AKT signaling pathway. J Exp Clin Cancer Res: CR. 2020;39:79.
PubMed PubMed Central Google Scholar
Liang W, Miao S, Zhang B, He S, Shou C, Manivel P, Krishna R, Chen Y, Shi YE. Synuclein γ protects Akt and mTOR and renders tumor resistance to Hsp90 disruption. Oncogene. 2015;34:2398–405.
He J, Xie N, Yang J, Guan H, Chen W, Wu H, Yuan Z, Wang K, Li G, Sun J, Yu L. SiRNA-mediated suppression of synuclein γ inhibits MDA-MB-231 cell migration and proliferation by downregulating the phosphorylation of AKT and ERK. J Breast Cancer. 2014;17:200–6.
PubMed PubMed Central Google Scholar
Singh VK, Zhou Y, Marsh JA, Uversky VN, Forman-Kay JD, Liu J, Jia Z. Synuclein-gamma targeting peptide inhibitor that enhances sensitivity of breast cancer cells to antimicrotubule drugs. Cancer Res. 2007;67:626–33.
Wang K, Shen Y, Xu J, Li Z, Liu Y, Yu C, Peng L, Zheng J, Zeng Y. Evaluation of synuclein-γ levels by novel monoclonal antibody in saliva and cancer tissues from oral squamous cell carcinoma patients. Neoplasma. 2020;67:707–13.
Yang J, Pan Y, Peng L, Zhang L, Zhao J, Zheng Z, Zheng J, Xu X, Zeng Y. Upregulation of Synuclein-γ and Snai1 contributes to poor clinical prognosis in oral squamous cell carcinoma patients. BioMed Res Int. 2022;2022:6534626.
PubMed PubMed Central Google Scholar
Yang J, Ren Z, Wang F, Zheng J, Zhuang Z, Zeng Y. γ-Synuclein promotes proliferation and inhibits apoptosis of oral squamous cell carcinoma via JAK2/STAT5b signaling pathway. Am J Cancer Res. 2024;14:2408–23.
CAS PubMed PubMed Central Google Scholar
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer. 2024;23:170.
CAS PubMed PubMed Central Google Scholar
Ellakwa DE, Mushtaq N, Khan S, Jabbar A, Abdelmalek MA, Wadan AS, Ellakwa TE, Raza A. Molecular functions of micrornas in colorectal cancer: recent roles in proliferation, angiogenesis, apoptosis, and chemoresistance. Naunyn-Schmiedebergs Arch Pharmacol. 2024;397:5617–30.
Piao L, Zhang M, Datta J, Xie X, Su T, Li H, Teknos TN, Pan Q. Lipid-based nanoparticle delivery of Pre-miR-107 inhibits the tumorigenicity of head and neck squamous cell carcinoma. Molecular Therapy: J Am Soc Gene Therapy. 2012;20:1261–9.
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol. 2024;102–103:4–16.
Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.
CAS PubMed PubMed Central Google Scholar
Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–9.
CAS PubMed PubMed Central Google Scholar
Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008;68:7846–54.
Gregory PA, Bracken CP, Bert AG, Goodall GJ. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell cycle (Georgetown, Tex). 2008;7:3112–8.
Su SG, Yang M, Zhang MF, Peng QZ, Li MY, Liu LP, Bao SY. miR-107-mediated decrease of HMGCS2 indicates poor outcomes and promotes cell migration in hepatocellular carcinoma. Int J Biochem Cell Biol. 2017;91:53–9.
Xiong J, Wang D, Wei A, Lu H, Tan C, Li A, Tang J, Wang Y, He S, Liu X, Hu W. Deregulated expression of miR-107 inhibits metastasis of PDAC t
Comments (0)