Born, M., Wolf, E.: Principles of optics, 7th edn. Cambridge University Press, Cambridge (2019)
He, C., He, H., Chang, J., et al.: Polarization optics for biomedical and clinical applications: a review. Light Sci. Appl. 10, 194 (2021). https://doi.org/10.1038/s41377-021-00639-x
Kikuchi, K.: Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34(1), 157–179 (2016). https://doi.org/10.1109/JLT.2015.2463719
Tang, P., Kirby, M.A., Le, N., Li, Y., et al.: Polarization sensitive optical coherence tomography with single input for imaging depth-resolved collagen organizations. Light Sci Appl 10, 237 (2021). https://doi.org/10.1038/s41377-021-00679-3
Tong, L., Huang, X., Wang, P., et al.: Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat Commun 11, 2308 (2020). https://doi.org/10.1038/s41467-020-16125-8
Li, S., Wei, M., Feng, X., et al.: Polarization-insensitive tunable terahertz polarization rotator. Optics Express 27(12), 16966–16974 (2019). https://doi.org/10.1364/OE.27.016966
Shahwar, D., Yoon, H., Akkanen, S., et al.: Polarization management in silicon photonics. npj Nanophoton. 1, 35 (2024). https://doi.org/10.1038/s44310-024-00033-6
Choi, Y., Oh, S., SohnSa, H., et al.: Broadband tunable polarization rotator based on the waveguiding effect of liquid crystals. J. Phys. D Appl. Phys. 54(35), 355108 (2021). https://doi.org/10.1088/1361-6463/ac0925
Jiao, H., Zweck, J., Yan, L., et al.: Receiver model for depolarized signal due to polarization-mode dispersion and partially polarized noise due to polarization-dependent loss in an optical fiber communication system. J. Lightwave Technol. 27(18), 4124–4315 (2009). https://doi.org/10.1109/JLT.2009.2022510
Grana, C., Pellacani, G., Cucchiara, R., et al.: A new algorithm for border description of polarized light surface microscopic images of pigmented skin lesions. IEEE Trans. Med. Imaging 22(8), 959–964 (2003). https://doi.org/10.1109/TMI.2003.815901
Zhou, Y., Lu, Y., Shen, Y., et al.: Polarized remote inversion of the refractive index of marine spilled oil from PARASOL images under sunglint. IEEE Trans Geosci Remote Sens 58(4), 2710–2719 (2020). https://doi.org/10.1109/TGRS.2019.2953640
Ren, Z., Sun, Y., Lin, Z., et al.: Tunable guided-mode resonance filters for multi-primary colors based on polarization rotation. Photonics Technol Lett 30(21), 1858–1861 (2018). https://doi.org/10.1109/LPT.2018.2870059
Su, W., Hung, W., Chen, L.: Parallel optical data storage based on polarization addressed amplitude modulation in dye-doped liquid crystals. J Sel Topics Quantum Electron 19(6), 3401505 (2013). https://doi.org/10.1109/JSTQE.2013.2278219
Aalto, T., Cherchi, M., Harjanne, M., et al.: Open-access 3-μm SOI waveguide platform for dense photonic integrated circuits. J Sel Topics Quant Electron 25(5), 8201109 (2019). https://doi.org/10.1109/JSTQE.2019.2908551
Ramirez, J., Elfaiki, H., Verolet, T., et al.: III-V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. J Sel Topics Quant Electron 26(2), 6100213 (2020). https://doi.org/10.1109/JSTQE.2019.2939503
Abrams, N., Cheng, Q., Glick, M., et al.: Silicon photonic 2.5D multi-chip module transceiver for high-performance data centers. J. Lightwave Technol. 38(13), 3346–3357 (2020). https://doi.org/10.1109/JLT.2020.2967235
Kissner, M., Bino, L., Päsler, F., et al.: An all-optical general-purpose CPU and optical computer architecture. J. Lightwave Technol. 42(22), 7999–8013 (2024). https://doi.org/10.1109/JLT.2024.3458459
Ning, S., Zhu, H., Feng, C., et al.: Photonic-electronic integrated circuits for high-performance computing and AI accelerators. J. Lightwave Technol. 42(22), 7834–7859 (2024). https://doi.org/10.1109/JLT.2024.3427716
Peng, H., Nahmias, M.A., Lima, T., et al.: Neuromorphic photonic integrated circuits. J Sel Topics Quantum Electron 24(6), 6101715 (2018). https://doi.org/10.1109/JSTQE.2018.2840448
Ruf, F., Nielsen, L., Volet, N., et al.: Analysis and design of low-loss and fast all-optical switch elements on silicon nitride for integrated quantum photonics. J. Lightwave Technol. 40(23), 7598–7609 (2022). https://doi.org/10.1109/JLT.2022.3213445
Barwicz, T., Watts, M.R., Popović, M., et al.: Polarization-transparent microphotonic devices in the strong confinement limit. Nat. Photonics 1, 57–60 (2007). https://doi.org/10.1038/nphoton.2006.41
Tan, H., Lin, Y., Zhang, J., et al.: Polarization division multiplexing link using a high-speed lithium niobate automatic polarization demultiplexer. Opt Lett 49(23), 6593–6596 (2024). https://doi.org/10.1364/OL.533035
Sun, X., Alam, M., Aitchison, J., et al.: Polarization rotator based on augmented low-index-guiding waveguide on silicon nitride/silicon-on-insulator platform. Opt. Lett. 41(14), 3229–3232 (2016). https://doi.org/10.1364/OL.41.003229
Zafar, H., Pereira, M., Kennedy, K., et al.: Fabrication-tolerant and CMOS-compatible polarization splitter and rotator based on a compact bent-tapered directional coupler. AIP Adv. 10, 125214 (2020). https://doi.org/10.1063/5.0030638
Sun, C., Yu, Y., Chen, G., Zhang, X.: A low crosstalk and broadband polarization rotator and splitter based on adiabatic couplers. Photonics Technol Lett 28(20), 2253–2256 (2016). https://doi.org/10.1109/LPT.2016.2591621
Zhang, J., Yu, M., Lo, G., et al.: Silicon-waveguide-based mode evolution polarization rotator. J Sel Topics Quantum Electron 16(1), 53–60 (2010). https://doi.org/10.1109/JSTQE.2009.2031424
Chen, L., Doerr, C., Chen, Y.: Compact polarization rotator on silicon for polarization-diversified circuits. Optics Lett 36(4), 469–471 (2011). https://doi.org/10.1364/OL.36.000469
Alonso-Ramos, C., Romero-García, S., Ortega-Moñux, A., et al.: Polarization rotator for InP rib waveguide. Opt. Lett. 37(3), 335–337 (2012). https://doi.org/10.1364/OL.37.000335
Xu, H., Shi, Y.: Subwavelength-grating-assisted silicon polarization rotator covering all optical communication bands. Opt. Express 27(4), 5588–5597 (2019). https://doi.org/10.1364/OE.27.005588
Abd-Elkader, A., Hameed, M.F.O., Areed, N.F.F., et al.: Highly tunable compact polarization rotator based on silicon on insulator platform. Opt Quantum Electron 51, 149 (2019). https://doi.org/10.1007/s11082-019-1845-5
Chang, W., Xu, S., Liu, D., et al.: Inverse design of a single-step-etched ultracompact silicon polarization rotator. Optics Express 28(19), 28343–28351 (2020). https://doi.org/10.1364/OE.399052
Xie, A., Zhou, L., Chen, J., et al.: Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide. Opt. Express 23(4), 3960–3970 (2015). https://doi.org/10.1364/OE.23.003960
Mitchell, C., Hu, T., Sun, S., et al.: Mid-infrared silicon photonics: from benchtop to real-world applications. APL Photonics 9, 080901 (2024). https://doi.org/10.1063/5.0222890
Eerdenbrugh, B., Lo, M., Kjoller, K., et al.: Nanoscale mid-infrared imaging of phase separation in a drug-polymer blend. J Pharm Sci 101(6), 2066–2073 (2012). https://doi.org/10.1002/jps.23099
Yang, Z., Zhang, Y., Chen, Y., et al.: Simultaneous detection of multiple gaseous pollutants using multi-wavelength differential absorption LIDAR. Optics Commun 518, 128359 (2022). https://doi.org/10.1016/j.optcom.2022.128359
Cui, X., Jiang, C., Cui, X., et al.: High-precision and real-time measurement of water isotope ratios based on a mid-infrared optical sensor. Anal. Chem. 96(24), 9842–9848 (2024). https://doi.org/10.1021/acs.analchem.4c00231
Comments (0)