Robust multibook recording with signal beam phase optimization based on Gerchberg–Saxton algorithm for holographic data storage

van Heerden, P.J.: Theory of optical information storage in solids. Appl. Opt. 2, 393–400 (1963)

ADS  Google Scholar 

Mok, F.H.: Angle-multiplexed storage of 5000 holograms in lithium niobate. Opt. Lett. 18, 915–917 (1993)

ADS  Google Scholar 

Shelby, R.M., Hoffnagle, J.A., Burr, G.W., Jefferson, C.M., Bernal, M.P., Coufal, H., Grygier, R.K., Gunther, H., Macfarlane, R.M., Sincerbox, G.T.: Pixel-matched holographic data storage with megabit pages. Opt. Lett. 22, 1509–1511 (1997)

ADS  Google Scholar 

Ashley, J., Bernal, M.P., Burr, G.W., Coufal, H., Guenther, H., Hoffnagle, J.A., Jefferson, C.M., Marcus, B., Macfarlane, R.M., Shelby, R.M., Sincerbox, G.T.: Holographic data storage. IBM J. Res. Dev. 44, 341–368 (2000)

Google Scholar 

d’Auria, L., Huignard, J.P., Slezak, C., Spitz, E.: Experimental holographic read-write memory using 3-D storage. Appl. Opt. 13, 808–818 (1974)

ADS  Google Scholar 

Matoba, O., Javidi, B.: Encrypted optical storage with angular multiplexing. Appl. Opt. 38, 7288–7293 (1999)

ADS  Google Scholar 

Kinoshita, N., Muroi, T., Ishii, N., Kamijo, K., Shimidzu, N.: Control of angular intervals for angle-multiplexed holographic memory. Jpn. J. Appl. Phys. 48, 03A029 (2009)

Google Scholar 

Muroi, T., Kinoshita, N., Ishii, N., Kamijo, K., Shimidzu, N.: Compensation of interference fringe distortion due to temperature variation in holographic data storage. Jpn. J. Appl. Phys. 49, 08KD03 (2010)

Google Scholar 

Miller, B.E., Takashima, Y.: Cavity techniques for holographic data storage recording. Opt. Expr. 24, 63006317 (2016)

Google Scholar 

Utsugi, T.: Holographic scattering in an angular-multiplexed hologram on a photopolymer. Appl. Opt. 57, 527–537 (2018)

ADS  Google Scholar 

Shimada, K., Hosaka, M., Yamazaki, K., Ide, T., Utsugi, T., Nagasawa, M., Mouri, T., Takatsuji, H., Izumi, K., Suenaga, H.: Reduction of intensity gradient in two-dimensional holographic data page. Jpn. J. Appl. Phys. 57, 09SC03 (2018)

Google Scholar 

Lande, D., Heanue, J.F., Bashaw, M.C., Hesselink, L.: Digital wavelength-multiplexed holographic data storage system. Opt. Lett. 21, 1780–1782 (1996)

ADS  Google Scholar 

Wu, P., Liu, Z., Yang, J.J., Flores, A., Wang, M.R.: Wavelength-multiplexed submicron holograms for disk-compatible data storage. Opt. Expr. 15, 17798–17804 (2007)

ADS  Google Scholar 

Psaltis, D., Levene, M., Pu, A., Barbastathis, G., Curtis, K.: Holographic storage using shift multiplexing. Opt. Lett. 20, 782–784 (1995)

ADS  Google Scholar 

Shimura, T., Ichimura, S., Fujimura, R., Kuroda, K., Tan, X., Horimai, H.: Analysis of a collinear holographic storage system: introduction of pixel spread function. Opt. Lett. 31, 1208–1210 (2006)

ADS  Google Scholar 

Horimai, H., Tan, X.: Collinear technology for a holographic versatile disk. Appl. Opt. 45, 910–914 (2006)

ADS  Google Scholar 

Watanabe, E., Kodate, K.: Optical correlator for face recognition using collinear holographic system. Jpn. J. Appl. Phys. 45, 6759–6761 (2006)

ADS  Google Scholar 

Yoshida, S., Kurata, H., Ozawa, S., Okubo, K., Horiuchi, S., Ushiyama, Z., Yamamoto, M., Koga, S., Tanaka, A.: High-density holographic data storage using three-dimensional shift multiplexing with spherical reference wave. Jpn. J. Appl. Phys. 52, 09LD07 (2013)

Google Scholar 

Takabayashi, M., Okamoto, A., Eto, T., Okamoto, T.: Shift-multiplexed self-referential holographic data storage. Appl. Opt. 53, 4375–4381 (2014)

ADS  Google Scholar 

Nobukawa, T., Nomura, T.: Shift multiplexing with a spherical wave in holographic data storage based on a computer-generated hologram. Appl. Opt. 56, F31–F36 (2017)

Google Scholar 

Horiuchi, S., Fukumoto, A., Yamamoto, M.: Analysis of crosstalk-free conditions for a cross-shift multiplexing method in holographic data recording. Appl. Opt. 57, 7805–7810 (2018)

ADS  Google Scholar 

Lin, Y., Ke, S., Song, H., Liu, H., Yang, R., Lin, D., Li, X., Zheng, J., Cao, Q., Hao, J., Lin, X., Tan, X.: Anti-noise performance analysis in amplitude-modulated collinear holographic data storage using deep learning. Opt. Expr. 32, 29666–29677 (2024)

Google Scholar 

Chijiwa, K., Takabayashi, M.: Deep learning-based design of additional patterns in self-referential holographic data storage. Opt. Rev. 31, 28–40 (2024)

Google Scholar 

Horimai, H.: Multi-level data write/retrieve by phase-locked collinear holography. Asia Communications and Photonics Conference, AF-1J.2 (2016)

Bunsen, M., Miwa, T.: Generation of amplitude- and phase-modulated signal beam with a phase-only spatial light modulator and its detection by the transport of intensity equation method for holographic data storage. Opt. Rev. 30, 397–408 (2023)

Google Scholar 

Igarashi, J., Ito, H., Honma, S.: Batch recording of multiple SQAM signal and self-reference detection technique. Opt. Rev. 30, 493–507 (2023)

Google Scholar 

Burckhardt, C.B.: Use of a random phase mask for the recording of Fourier transform holograms of data masks. Appl. Opt. 9, 695–700 (1970)

ADS  Google Scholar 

Takeda, Y.: Hologram memory with high quality and high information storage density –hologram memory–. Jpn. J. Appl. Phys. 11, 656–665 (1972)

ADS  Google Scholar 

Nakayama, Y., Kato, M.: Linear recording of Fourier transform holograms using a pseudorandom diffuser. Appl. Opt. 21, 1410–1418 (1982)

ADS  Google Scholar 

Gao, Q., Kostuk, R.: Improvement to holographic digital data-storage systems with random and pseudorandom phase masks. Appl. Opt. 36, 4853–4861 (1997)

ADS  Google Scholar 

Tan, X., Matoba, O., Shimura, T., Kuroda, K.: Improvement in holographic storage capacity by use of double-random phase encryption. Appl. Opt. 40, 4721–4727 (2001)

ADS  Google Scholar 

Curtis, K., Dhar, L., Hill, A., Wilson, W., Ayres, M.: Holographic data storage from theory to practical systems. Wiley, Hoboken (2010)

Google Scholar 

Anderson, K., Curtis, K.: Polytopic multiplexing. Opt. Lett. 29, 1402–1404 (2004)

ADS  Google Scholar 

Saita, Y., Nomura, T.: Design method of input phase mask to improve light use efficiency and reconstructed image quality for holographic memory. Appl. Opt. 53, 4136–4140 (2014)

ADS  Google Scholar 

Ishii, T., Fujimura, R.: Interpixel crosstalk cancellation on holographic memory. Jpn. J. Appl. Phys. 56, 0910 (2017)

Google Scholar 

Nonaka, T., Hirayama, S., Shimura, T., Fujimura, R.: The designed phase mask for suppressing the inter-pixel crosstalk noise in intensity-modulated multilevel holographic data storage systems. Photonics 11, 507 (2024)

Google Scholar 

Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

Google Scholar 

Lambourdiere, S.R., Fukumoto, A., Tanaka, K., Watanabe, K.: Simulation of holographic data storage for the optical collinear system. Jpn. J. Appl. Phys. 45, 1246–1252 (2006)

ADS  Google Scholar 

Sano, T., Naito, F., Yoshida, S., Yamamoto, M.: Computer simulation analysis of speckle-shift multiplexed recording in holographic memory. IEICE Trans. Electron. E90-C, 1606–1611 (2007)

ADS  Google Scholar 

Hosaka, M., Ishii, T., Hoshizawa, T.: Volume recorded hologram modeling, point spread function analysis, and segmented adaptive equalization for holographic data storage. Appl. Opt. 58, 4678–4686 (2019)

ADS  Google Scholar 

Kogelnik, H.: Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48, 2909–2947 (1969)

ADS  Google Scholar 

Comments (0)

No login
gif