Tailoring plasmonic and nonlinear optical response in ZnSe-based core–shell nanocomposites: influence of shell thickness and host matrix permittivity

Abalde-Cela, S., Aldeanueva-Potel, P., Mateo-Mateo, C., Rodríguez-Lorenzo, L., Alvarez-Puebla, R.A., Liz-Marzán, L.M.: Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J. R. Soc. Interface 7, S435–S450 (2010). https://doi.org/10.1098/rsif.2010.0125.focus

Article  Google Scholar 

Molaei, M.J.: The optical properties and solar energy conversion applications of carbon quantum dots: a review. Sol. Energy 196, 549–566 (2020). https://doi.org/10.1016/j.solener.2019.12.036

Article  ADS  Google Scholar 

Brolo, A.G.: Plasmonics for future biosensors. Nat. Photonics 6, 709–713 (2012). https://doi.org/10.1038/nphoton.2012.266

Article  ADS  Google Scholar 

Li, Z., Zhang, Y., Huang, S., Wu, X., Shi, L., Liu, Q.: Thermal stability and pyrolysis characteristics of MTMS aerogels prepared in pure water. J. Nanopart. Res. 22, 1–14 (2020). https://doi.org/10.1007/s11051-020-05062-8

Article  Google Scholar 

Getachew, S.: Effect of tunable dielectric core on optical bistability in cylindrical core-shell nanocomposites. Adv. Condens. Matter Phys. 2024, Article ID 9911970 (2024). https://doi.org/10.1155/2024/9911970

Article  Google Scholar 

Halas, N.J.: Playing with plasmons: tuning the optical resonant properties of metallic nanoshells. MRS Bull. 30, 362–367 (2005). https://doi.org/10.1557/mrs2005.99

Article  ADS  Google Scholar 

Noguez, C.: Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J. Phys. Chem. C 111, 3806–3819 (2007). https://doi.org/10.1021/jp066539m

Article  Google Scholar 

Chu, F., Zhan, Y., Yang, J., Wang, J.: Using Au/SiO\(_2\) core-shell structure to enhance the fluorescence of MEH-PPV in the detection of nitrated aromatic explosives. Optik 124, 1338–1341 (2013). https://doi.org/10.1016/j.ijleo.2012.03.059

Article  ADS  Google Scholar 

Getachew, S.: Investigation of refractive index and group velocity of metal coated dielectric spherical nanocomposites within both passive and active dielectric cores. Iran. J. Phys. Res. 24, 51890 (2024). https://doi.org/10.47176/ijpr.24.3.51890

Article  Google Scholar 

Rodrigues, A.R.O., Matos, J.O.G., Nova Dias, A.M., Almeida, B.G., Pires, A., Pereira, A.M., Araújo, J.P., Queiroz, M.J.R.P., Castanheira, E.M.S., Coutinho, P.J.G.: Development of multifunctional liposomes containing magnetic/plasmonic \(MnFe_2O_4\)/Au core/shell nanoparticles. Pharmaceutics 11, 10 (2019). https://doi.org/10.3390/pharmaceutics11010010

Article  Google Scholar 

Yeneayehu, K., Senbeta, T., Mesfin, B.: The effect of surface plasmon resonances on spherical magneto-plasmonic Fe\(_3\)O\(_4\)@Ag core-shell nanoparticles (2021). https://doi.org/10.21203/rs.3.rs-353199549/v1

Papavassiliou, G.C.: Optical properties of small inorganic and organic metal particles. Prog. Solid State Chem. 12, 185–271 (1979). https://doi.org/10.1016/0079-6786(79)90001-3

Article  Google Scholar 

Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, Hoboken (2008). https://doi.org/10.1002/9783527618156

Book  Google Scholar 

Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer, Berlin (2013). https://doi.org/10.1007/978-3-662-09109-8

Book  Google Scholar 

Jabir, J.N., Ameen, S.M.M., Al-Khursan, A.H.: Plasmonic quantum dot nanolaser: effect of waveguide Fermi energy. Plasmonics 14, 1881–1891 (2019)

Google Scholar 

Qiao, L., Hu, Z., Lin, Y.: Enhanced nonlinear optical response of ZnSe nanocrystals. J. Appl. Phys. 112, 053109 (2012). https://doi.org/10.1063/1.4748301

Article  Google Scholar 

Prodan, E., Radloff, C., Halas, N.J., Nordlander, P.: A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003). https://doi.org/10.1126/science.1089171

Article  ADS  Google Scholar 

Wang, F., Shen, Y.R.: General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006). https://doi.org/10.1103/PhysRevLett.97.206806

Article  ADS  Google Scholar 

Beyene, G., Senbeta, T., Mesfin, B.: Size dependent optical properties of ZnO@Ag core/shell nanostructures. Chin. J. Phys. 58, 235–243 (2019). https://doi.org/10.1016/j.cjph.2019.01.001

Article  Google Scholar 

Reynolds, D.C., Litton, C.W., Collins, T.C.: Optical properties of ZnO. In: Litton, C.W., Collins, T.C., Reynolds, D.C. (eds.) Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, pp. 29–58. Wiley, Hoboken (2011). https://doi.org/10.1002/9780470979714.ch2

Chapter  Google Scholar 

Husin, S.A.S., Muhammad, F.D., Abdullah, C.A.C., Ribut, S.H., Zulkifli, M.Z., Mahdi, M.A.: Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser. Chin. Phys. B 28, 084207 (2019). https://doi.org/10.1088/1674-1056/28/8/084207

Article  ADS  Google Scholar 

Rao, L., Tang, Y., Li, Z., Ding, X., Li, J., Yu, S., Lu, H.: Effect of ZnO nanostructures on the optical properties of white light-emitting diodes. Opt. Express 25, A432–A443 (2017). https://doi.org/10.1364/OE.25.00A432

Article  ADS  Google Scholar 

Xuan, J.Y., Zhao, G.D., Shi, X.B., Geng, W., Li, H.Z., Sun, M.L., Liu, B.: In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H\(_2\)S detection at room temperature. Chin. Phys. B 30, 020701 (2021). https://doi.org/10.1088/1674-1056/abce62

Article  ADS  Google Scholar 

Zheng, Z.Q., Yao, J.D., Wang, B., Yang, G.W.: Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Sci. Rep. 5, 11070 (2015). https://doi.org/10.1038/srep11070

Article  ADS  Google Scholar 

Abdullah, M., Al-Khursan, A.H., Al-Ansari, R.A.: ZnO–MgZnO quantum-dot semiconductor optical amplifiers. Recent Patents Electr. Eng. 2, 226–238 (2009)

Google Scholar 

Getachew, S., Berga, G.: Investigating the optical bistability of pure spheroidal nanoinclusions in passive and active host matrices. Can. J. Phys. (2025). https://doi.org/10.1139/cjp-2024-0144

Article  Google Scholar 

Knoss, R.W.: Quantum Dots: Research, Technology and Applications, 1st edn., p. 245. NOVA Science Publishers, NOVA Science Publishers (2009)

Google Scholar 

Xu, X., Yu, L.: Perovskite quantum dot photodetectors. In: Perovskite Quantum Dots: Synthesis, pp. 181–218. Properties and Applications. Springer, Singapore (2020)

Google Scholar 

Fares, H., Ahmed, M., Moustafa, S.: Plasmon resonances of graphene-assisted core–bishell nanoparticles. Phys. Scr. 98, 035509 (2023). https://doi.org/10.1088/1402-4896/acb7d5

Article  ADS  Google Scholar 

Yuwen, L., Sun, Y., Tan, G., Xiu, W., Zhang, Y., Weng, L., Wang, L.: MoS\(_2\)@polydopamine-Ag nanosheets with enhanced antibacterial activity for effective treatment of Staphylococcus aureus biofilms and wound infection. Nanoscale 10, 16711–16720 (2018). https://doi.org/10.1039/c8nr03674c

Article  Google Scholar 

Crisan, C.M., Mocan, T., Manolea, M., Lasca, L.I., Tǎbǎran, F.A., Mocan, L.: Review on silver nanoparticles as a novel class of antibacterial solutions. Appl. Sci. 11, 1120 (2021). https://doi.org/10.3390/app11031120

Article  Google Scholar 

Jabeen, S., Qureshi, R., Munazir, M., Maqsood, M., Munir, M., Shah, S.S.H., Rahim, B.Z.: Application of green synthesized silver nanoparticles in cancer treatment a critical review. Mater. Res. Express 8, 092001 (2021). https://doi.org/10.1088/2053-1591/ac1de3

Article  ADS  Google Scholar 

Muruganandham, M., Al-Otibi, F.O., Alharbi, R.I., Sivasubramanian, K., Chaulagain, A., Velmurugan, P., Basavegowda, N.: Tabebuia rosea seed extract mediated synthesis of silver nanoparticles with antibacterial, antioxidant, and antiproliferative activities. Mater. Res. Express 10, 125006 (2023). https://doi.org/10.1088/2053-1591/acf5e2

Article  ADS  Google Scholar 

Obeng, E., Feng, J., Wang, D., Zheng, D., Xiang, B., Shen, J.: Multifunctional phototheranostic agent ZnO@Ag for anti-infection through photothermal/photodynamic therapy. Front. Chem. 10, 1054739 (2022). https://doi.org/10.3389/fchem.2022.1054739

Article  ADS  Google Scholar 

Mohamad Sukri, S.N.A., Shameli, K., Teow, S.-Y., Chew, J., Ooi, L.T., Lee-Kiun Soon, M., et al.: Enhanced antibacterial and anticancer activities of plant extract mediated green synthesized zinc oxide-silver nanoparticles. Front. Microbiol. 14, 1194292 (2023). https://doi.org/10.3389/fmicb.2023.1194292

Article  Google Scholar 

Arooj, S., Nazir, S., Nadhman, A., Ahmad, N., Muhammad, B., Ahmad, I., et al.: Novel ZnO: Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells, Beilstein. J. Nanotechnol. 6, 570–582 (2015). https://doi.org/10.3762/bjnano.6.59

Article  Google Scholar 

Hirsch, L.R., Jackson, J.B., Lee, A., Halas, N.J., West, J.L.: A whole blood immunoassay using gold nanoshells. Anal. Chem. 75, 2377–2381 (2003). https://doi.org/10.1021/ac0262210

Article  Google Scholar 

Obeng, E., Feng, J., Wang, D., Zheng, D., Xiang, B., Shen, J.: Multifunctional phototheranostic agent ZnO@Ag for anti-infection through photothermal/photodynamic therapy. Front. Chem. 10, 1054739 (2022). https://doi.org/10.3389/fchem.2022.1054739

Article  ADS 

Comments (0)

No login
gif