CRISPR/Cas9-mediated deletion of a kinetoplast-associated gene attenuates virulence in parasites

Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R Leishmaniasis: a review. F1000Research 2017;6.

Abdellahi L, Iraji F, Mahmoudabadi A, Hejazi SH (2022) Vaccination in leishmaniasis: a review Article. Iran Biomed J 26:1

PubMed  Google Scholar 

Zhao RZ, Jiang S, Zhang L, Yu ZB (2019) Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 44:3–15

CAS  PubMed  PubMed Central  Google Scholar 

Kaye PM, Matlashewski G, Mohan S, Le Rutte E, Mondal D, Khamesipour A, Malvolti S (2023) Vaccine value profile for leishmaniasis. vaccine.;41:S153-S75

Pacheco-Fernandez T, Volpedo G, Gannavaram S, Bhattacharya P, Dey R, Satoskar A et al (2021) Revival of leishmanization and Leishmanin. Front Cell Infect Microbiol 11:639801

CAS  PubMed  PubMed Central  Google Scholar 

Mohebali M, Nadim A, Khamesipour A (2019) An overview of leishmanization experience: A successful control measure and a tool to evaluate candidate vaccines. Acta Trop 200:105173

PubMed  Google Scholar 

Volpedo G, Bhattacharya P, Gannavaram S, Pacheco-Fernandez T, Oljuskin T, Dey R et al (2022) The history of live attenuated centrin gene-deleted leishmania vaccine candidates. Pathogens 11:431

CAS  PubMed  PubMed Central  Google Scholar 

Zabala-Peñafiel A, Todd D, Daneshvar H, Burchmore R (2020) The potential of live attenuated vaccines against cutaneous leishmaniasis. Exp Parasitol 210:107849

PubMed  Google Scholar 

Moreira PO, Nogueira PM, Monte-Neto RL (2023) Next-Generation leishmanization: revisiting molecular targets for selecting genetically engineered Live-Attenuated leishmania. Microorganisms 11:1043

CAS  PubMed  PubMed Central  Google Scholar 

Nateghi Rostami M (2020) CRISPR/Cas9 gene drive technology to control transmission of vector-borne parasitic infections. Parasite Immunol 42:e12762

PubMed  Google Scholar 

Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E (2017) A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal Soc Open Sci 4:170095

Google Scholar 

Burkard GS, Jutzi P, Roditi I (2011) Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol Biochem Parasitol 175:91–94

Google Scholar 

Nateghi Rostami M, Hossein Rashidi B, Nazari R, Aghsaghloo F, Habibi A (2017) A multiplex assay of Trichomonas vaginalis, chlamydia trachomatis and neisseria gonorrhoeae infections in genital specimens. J Infect Dev Ctries 11:833–839

PubMed  Google Scholar 

Keshavarz Valian H, Khoshabe Abdollah Kenedy L, Nateghi Rostami M, Miramin Mohammadi A, Khamesipour A (2008) Role of Mycobacterium vaccae in the protection induced by first generation leishmania vaccine against murine model of leishmaniasis. Parasitol Res 103:21–28

PubMed  Google Scholar 

Darzi F, Davoudian R, Nateghi Rostami M (2021) Differential inflammatory responses associated with leishmania major and L tropica in culture. Parasite Immunol 43:e12841

CAS  PubMed  Google Scholar 

Nateghi Rostami M, Keshavarz H, Edalat R, Sarrafnejad A, Shahrestani T, Mahboudi F, Khamesipour A (2010) CD8 + T cells as a source of IFN-γ production in human cutaneous leishmaniasis. PLoS Negl Trop Dis 4:e845

PubMed  PubMed Central  Google Scholar 

Titus RG, Marchand M, Boon T, Louis J (1985) A limiting Dilution assay for quantifying leishmania major in tissues of infected mice. Parasite Immunol 7:545–555

CAS  PubMed  Google Scholar 

TASWELL C (1987) Limiting Dilution assays for the separation, characterization, and quantitation of biologically active particles and their clonal progeny. Cell Separation, Elsevier, pp 109–145

Scott P, Pearce E, Natovitz P, Sher A (1987) Vaccination against cutaneous leishmaniasis in a murine model. I. Induction of protective immunity with a soluble extract of promastigotes. J Immunol (Baltimore Md: 1950) 139:221–227

CAS  Google Scholar 

Miramin-Mohammadi A, Javadi A, Eskandari SE, Nateghi-Rostami M, Khamesipour A (2021) Immune responses in cutaneous leishmaniasis: in vitro Thelper1/Thelper2 cytokine profiles using live versus killed leishmania major. J Arthropod Borne Dis 15:126–135

PubMed  PubMed Central  Google Scholar 

Singh R, Purkait B, Abhishek K, Saini S, Das S, Verma S et al (2016) Universal minicircle sequence binding protein of leishmania donovani regulates pathogenicity by controlling expression of cytochrome-b. Cell Bioscience 6:1–17

Google Scholar 

Beneke T, Gluenz E (2019) LeishGEdit: a method for rapid gene knockout and tagging using CRISPR-Cas9. Methods and Protocols, Springer,, Leishmania, pp 189–210

Google Scholar 

Martel D, Beneke T, Gluenz E, Späth GF, Rachidi N Characterisation of casein kinase 1.1 in leishmania donovani using the CRISPR Cas9 toolkit. BioMed research international 2017;2017.

Nemati Haravani T, Parvizi P, Hejazi SH, Sedaghat MM, Eskandarian A, Nateghi Rostami M (2023) Evaluation of expression variations in virulence-related genes of leishmania major after several culture passages compared with phlebotomus Papatasi isolated promastigotes. PLoS ONE 18:e0284240

CAS  PubMed  PubMed Central  Google Scholar 

Sela D, Shlomai J (2009) Regulation of UMSBP activities through redox-sensitive protein domains. Nucleic Acids Res 37:279–288

CAS  PubMed  Google Scholar 

Selvapandiyan A, Debrabant A, Duncan R, Muller J, Salotra P, Sreenivas G et al (2004) Centrin gene disruption impairs stage-specific basal body duplication and cell cycle progression in leishmania. J Biol Chem 279:25703–25710

CAS  PubMed  Google Scholar 

Moreira POL, Nogueira PM, Monte-Neto RL (2023) Next-Generation Next-Generation Leishmanization: Revisiting Molecular Targets for Selecting Genetically Engineered Live-Attenuated Leishmania

Bogdan C (2008) Mechanisms and consequences of persistence of intracellular pathogens: leishmaniasis as an example. Cell Microbiol 10:1221–1234

CAS  PubMed  Google Scholar 

Mendonça SC (2016) Differences in immune responses against leishmania induced by infection and by immunization with killed parasite antigen: implications for vaccine discovery. Parasites Vectors 9:1–9

Google Scholar 

Nateghi-Rostami M, Sohrabi Y, Memory T (2024) Cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis. Front Immunol 15:1304696

CAS  PubMed  PubMed Central  Google Scholar 

Scott P (2003) Development and regulation of cell-mediated immunity in experimental leishmaniasis. Immunol Res 27:489–498

CAS  PubMed  Google Scholar 

Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to leishmania major in mice. Nat Rev Immunol 2:845–858

CAS  PubMed  Google Scholar 

Rosas LE, Keiser T, Pyles R, Durbin J, Satoskar AR (2003) Development of protective immunity against cutaneous leishmaniasis is dependent on STAT1-mediated IFN signaling pathway. Eur J Immunol 33:1799–1805

CAS  PubMed  Google Scholar 

Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D (2000) A natural model of leishmania major infection reveals a prolonged silent phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 165:969–977

CAS  PubMed  Google Scholar 

Bogdan C, Röllinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–76

CAS  PubMed  Google Scholar 

Campos-Neto A (2005) What about Th1/Th2 in cutaneous leishmaniasis vaccine discovery? Braz J Med Biol Res 38:979–984

CAS  PubMed  Google Scholar 

Nateghi Rostami M, Khamesipour A (2021) Potential biomarkers of immune protection in human leishmaniasis. Med Microbiol Immunol 210:81–100

Google Scholar 

Nateghi Rostami M, Keshavarz H, Khamesipour A (2010) Immune response of BALB/c mice against an experimental vaccine of alum precipitated autoclaved leishmania major (Alum-ALM) mixed with BCG or Mycobacterium vaccae. Trop Biomed 27:89–102

CAS  PubMed  Google Scholar 

Ismail N, Karmakar S, Bhattacharya P, Sepahpour T, Takeda K, Hamano S et al (2022) Leishmania major centrin Gene-Deleted parasites generate skin resident memory T-Cell immune response analogous to leishmanization. Front Immunol 13:864031

CAS  PubMed  PubMed Central  Google Scholar 

Peters NC, Pagán AJ, Lawyer PG, Hand TW, Henrique Roma E, Stamper LW et al (2014) Chronic parasitic infection maintains high frequencies of short-lived Ly6C + CD4 + effector T cells that are required for protection against re-infection. PLoS Pathog 10:e1004538

PubMed  PubMed Central  Google Scholar 

Zhang W-W, Karmakar S, Gannavaram S, Dey R, Lypaczewski P, Ismail N et al (2020) A second generation leishmanization vaccine with a markerless attenuated leishmania major strain using CRISPR gene editing. Nat Commun 11:3461

CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif