Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R Leishmaniasis: a review. F1000Research 2017;6.
Abdellahi L, Iraji F, Mahmoudabadi A, Hejazi SH (2022) Vaccination in leishmaniasis: a review Article. Iran Biomed J 26:1
Zhao RZ, Jiang S, Zhang L, Yu ZB (2019) Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 44:3–15
CAS PubMed PubMed Central Google Scholar
Kaye PM, Matlashewski G, Mohan S, Le Rutte E, Mondal D, Khamesipour A, Malvolti S (2023) Vaccine value profile for leishmaniasis. vaccine.;41:S153-S75
Pacheco-Fernandez T, Volpedo G, Gannavaram S, Bhattacharya P, Dey R, Satoskar A et al (2021) Revival of leishmanization and Leishmanin. Front Cell Infect Microbiol 11:639801
CAS PubMed PubMed Central Google Scholar
Mohebali M, Nadim A, Khamesipour A (2019) An overview of leishmanization experience: A successful control measure and a tool to evaluate candidate vaccines. Acta Trop 200:105173
Volpedo G, Bhattacharya P, Gannavaram S, Pacheco-Fernandez T, Oljuskin T, Dey R et al (2022) The history of live attenuated centrin gene-deleted leishmania vaccine candidates. Pathogens 11:431
CAS PubMed PubMed Central Google Scholar
Zabala-Peñafiel A, Todd D, Daneshvar H, Burchmore R (2020) The potential of live attenuated vaccines against cutaneous leishmaniasis. Exp Parasitol 210:107849
Moreira PO, Nogueira PM, Monte-Neto RL (2023) Next-Generation leishmanization: revisiting molecular targets for selecting genetically engineered Live-Attenuated leishmania. Microorganisms 11:1043
CAS PubMed PubMed Central Google Scholar
Nateghi Rostami M (2020) CRISPR/Cas9 gene drive technology to control transmission of vector-borne parasitic infections. Parasite Immunol 42:e12762
Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E (2017) A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal Soc Open Sci 4:170095
Burkard GS, Jutzi P, Roditi I (2011) Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol Biochem Parasitol 175:91–94
Nateghi Rostami M, Hossein Rashidi B, Nazari R, Aghsaghloo F, Habibi A (2017) A multiplex assay of Trichomonas vaginalis, chlamydia trachomatis and neisseria gonorrhoeae infections in genital specimens. J Infect Dev Ctries 11:833–839
Keshavarz Valian H, Khoshabe Abdollah Kenedy L, Nateghi Rostami M, Miramin Mohammadi A, Khamesipour A (2008) Role of Mycobacterium vaccae in the protection induced by first generation leishmania vaccine against murine model of leishmaniasis. Parasitol Res 103:21–28
Darzi F, Davoudian R, Nateghi Rostami M (2021) Differential inflammatory responses associated with leishmania major and L tropica in culture. Parasite Immunol 43:e12841
Nateghi Rostami M, Keshavarz H, Edalat R, Sarrafnejad A, Shahrestani T, Mahboudi F, Khamesipour A (2010) CD8 + T cells as a source of IFN-γ production in human cutaneous leishmaniasis. PLoS Negl Trop Dis 4:e845
PubMed PubMed Central Google Scholar
Titus RG, Marchand M, Boon T, Louis J (1985) A limiting Dilution assay for quantifying leishmania major in tissues of infected mice. Parasite Immunol 7:545–555
TASWELL C (1987) Limiting Dilution assays for the separation, characterization, and quantitation of biologically active particles and their clonal progeny. Cell Separation, Elsevier, pp 109–145
Scott P, Pearce E, Natovitz P, Sher A (1987) Vaccination against cutaneous leishmaniasis in a murine model. I. Induction of protective immunity with a soluble extract of promastigotes. J Immunol (Baltimore Md: 1950) 139:221–227
Miramin-Mohammadi A, Javadi A, Eskandari SE, Nateghi-Rostami M, Khamesipour A (2021) Immune responses in cutaneous leishmaniasis: in vitro Thelper1/Thelper2 cytokine profiles using live versus killed leishmania major. J Arthropod Borne Dis 15:126–135
PubMed PubMed Central Google Scholar
Singh R, Purkait B, Abhishek K, Saini S, Das S, Verma S et al (2016) Universal minicircle sequence binding protein of leishmania donovani regulates pathogenicity by controlling expression of cytochrome-b. Cell Bioscience 6:1–17
Beneke T, Gluenz E (2019) LeishGEdit: a method for rapid gene knockout and tagging using CRISPR-Cas9. Methods and Protocols, Springer,, Leishmania, pp 189–210
Martel D, Beneke T, Gluenz E, Späth GF, Rachidi N Characterisation of casein kinase 1.1 in leishmania donovani using the CRISPR Cas9 toolkit. BioMed research international 2017;2017.
Nemati Haravani T, Parvizi P, Hejazi SH, Sedaghat MM, Eskandarian A, Nateghi Rostami M (2023) Evaluation of expression variations in virulence-related genes of leishmania major after several culture passages compared with phlebotomus Papatasi isolated promastigotes. PLoS ONE 18:e0284240
CAS PubMed PubMed Central Google Scholar
Sela D, Shlomai J (2009) Regulation of UMSBP activities through redox-sensitive protein domains. Nucleic Acids Res 37:279–288
Selvapandiyan A, Debrabant A, Duncan R, Muller J, Salotra P, Sreenivas G et al (2004) Centrin gene disruption impairs stage-specific basal body duplication and cell cycle progression in leishmania. J Biol Chem 279:25703–25710
Moreira POL, Nogueira PM, Monte-Neto RL (2023) Next-Generation Next-Generation Leishmanization: Revisiting Molecular Targets for Selecting Genetically Engineered Live-Attenuated Leishmania
Bogdan C (2008) Mechanisms and consequences of persistence of intracellular pathogens: leishmaniasis as an example. Cell Microbiol 10:1221–1234
Mendonça SC (2016) Differences in immune responses against leishmania induced by infection and by immunization with killed parasite antigen: implications for vaccine discovery. Parasites Vectors 9:1–9
Nateghi-Rostami M, Sohrabi Y, Memory T (2024) Cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis. Front Immunol 15:1304696
CAS PubMed PubMed Central Google Scholar
Scott P (2003) Development and regulation of cell-mediated immunity in experimental leishmaniasis. Immunol Res 27:489–498
Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to leishmania major in mice. Nat Rev Immunol 2:845–858
Rosas LE, Keiser T, Pyles R, Durbin J, Satoskar AR (2003) Development of protective immunity against cutaneous leishmaniasis is dependent on STAT1-mediated IFN signaling pathway. Eur J Immunol 33:1799–1805
Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D (2000) A natural model of leishmania major infection reveals a prolonged silent phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 165:969–977
Bogdan C, Röllinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–76
Campos-Neto A (2005) What about Th1/Th2 in cutaneous leishmaniasis vaccine discovery? Braz J Med Biol Res 38:979–984
Nateghi Rostami M, Khamesipour A (2021) Potential biomarkers of immune protection in human leishmaniasis. Med Microbiol Immunol 210:81–100
Nateghi Rostami M, Keshavarz H, Khamesipour A (2010) Immune response of BALB/c mice against an experimental vaccine of alum precipitated autoclaved leishmania major (Alum-ALM) mixed with BCG or Mycobacterium vaccae. Trop Biomed 27:89–102
Ismail N, Karmakar S, Bhattacharya P, Sepahpour T, Takeda K, Hamano S et al (2022) Leishmania major centrin Gene-Deleted parasites generate skin resident memory T-Cell immune response analogous to leishmanization. Front Immunol 13:864031
CAS PubMed PubMed Central Google Scholar
Peters NC, Pagán AJ, Lawyer PG, Hand TW, Henrique Roma E, Stamper LW et al (2014) Chronic parasitic infection maintains high frequencies of short-lived Ly6C + CD4 + effector T cells that are required for protection against re-infection. PLoS Pathog 10:e1004538
PubMed PubMed Central Google Scholar
Zhang W-W, Karmakar S, Gannavaram S, Dey R, Lypaczewski P, Ismail N et al (2020) A second generation leishmanization vaccine with a markerless attenuated leishmania major strain using CRISPR gene editing. Nat Commun 11:3461
Comments (0)