Fuhrmann S, Zou C, Levine EM (2014) Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 123:141–150
Article PubMed CAS Google Scholar
Gupta S, Lytvynchuk L, Ardan T, Studenovska H, Faura G, Eide L, Znaor L, Erceg S, Stieger K, Motlik J, Bharti K, Petrovski G (2023) Retinal pigment epithelium cell development: extrapolating basic biology to stem cell research. Biomedicines 11(2)
Maurya M, Bora K, Blomfield AK, Pavlovich MC, Huang S, Liu CH, Chen J (2023) Oxidative stress in retinal pigment epithelium degeneration: from pathogenesis to therapeutic targets in dry age-related macular degeneration. Neural Regen Res 18(10):2173–2181
Article PubMed PubMed Central CAS Google Scholar
Zou H, Shan C, Ma L, Liu J, Yang N, Zhao J (2020) Polarity and epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PeerJ 8:e10136
Article PubMed PubMed Central Google Scholar
Pouw RB, Ricklin D (2021) Tipping the balance: intricate roles of the complement system in disease and therapy. Semin Immunopathol 43(6):757–771
Article PubMed PubMed Central CAS Google Scholar
Kawa MP, Machalinska A, Roginska D, Machalinski B (2014) Complement system in pathogenesis of AMD: dual player in degeneration and protection of retinal tissue. J Immunol Res 2014:483960
Article PubMed PubMed Central Google Scholar
Hu M, Liu B, Jawad S, Ling D, Casady M, Wei L, Nussenblatt RB (2011) C5a contributes to intraocular inflammation by affecting retinal pigment epithelial cells and immune cells. Br J Ophthalmol 95(12):1738–1744
Fernandez-Godino R, Pierce EA (2018) C3a triggers formation of sub-retinal pigment epithelium deposits via the ubiquitin proteasome pathway. Sci Rep 8(1):9679
Article PubMed PubMed Central Google Scholar
Llorián-Salvador M, Byrne EM, Szczepan M, Little K, Chen M, Xu H (2022) Complement activation contributes to subretinal fibrosis through the induction of epithelial-to-mesenchymal transition (EMT) in retinal pigment epithelial cells. J Neuroinflammation 19(1):182
Article PubMed PubMed Central Google Scholar
Brandstetter C, Holz FG, Krohne TU (2015) Complement component C5a primes retinal pigment epithelial cells for inflammasome activation by Lipofuscin-mediated photooxidative damage. J Biol Chem 290(52):31189–31198
Article PubMed PubMed Central CAS Google Scholar
Luo S, Chen Y, Yang L, Gong X, Wu Z (2022) The complement system in retinal detachment with choroidal detachment. Curr Eye Res 47(5):809–812
Article PubMed CAS Google Scholar
Luo S, Xu H, Yang L, Gong X, Shen J, Chen X, Wu Z (2022) Quantitative proteomics analysis of human vitreous in rhegmatogenous retinal detachment associated with choroidal detachment by data-independent acquisition mass spectrometry. Mol Cell Biochem 477(6):1849–1863
Article PubMed CAS Google Scholar
Luo S, Xu H, Gong X, Shen J, Chen X, Wu Z (2022) The complement C3a-C3aR and C5a-C5aR pathways promote viability and inflammation of human retinal pigment epithelium cells by targeting NF-kappaB signaling. Exp Ther Med 24(2):493
Article PubMed PubMed Central CAS Google Scholar
Li X, Ma B, Zhang W, Song Z, Zhang X, Liao M, Li X, Zhao X, Du M, Yu J, He S, Yan H (2023) The essential role of N6-methyladenosine RNA methylation in complex eye diseases. Genes Dis 10(2):505–520
Article PubMed CAS Google Scholar
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6(1):74
Article PubMed PubMed Central CAS Google Scholar
Hu Y, Chen J, Wang Y, Sun J, Huang P, Feng J, Liu T, Sun X (2023) Fat mass and obesity-associated protein alleviates Abeta(1–40) induced retinal pigment epithelial cells degeneration via PKA/CREB signaling pathway. Cell Biol Int 47(3):584–597
Article PubMed CAS Google Scholar
Chen X, Wang Y, Wang JN, Cao QC, Sun RX, Zhu HJ, Zhang YR, Ji JD, Liu QH (2022) m(6)A modification of circSPECC1 suppresses RPE oxidative damage and maintains retinal homeostasis. Cell Rep 41(7):111671
Article PubMed CAS Google Scholar
Zhao X, Li X, Li L, Zhang Y, Wu F, Yin R, Yuan M, Li X (2023) Alterations of the m(6)A methylation induced by TGF-beta2 in ARPE-19 cells. Front Biosci (Landmark Ed) 28(7):148
Article PubMed CAS Google Scholar
Sugiura A, Beier KL, Chi C, Heintzman DR, Ye X, Wolf MM, Patterson AR, Cephus JY, Hong HS, Lyssiotis CA, Newcomb DC, Rathmell JC (2023) Tissue-Specific Dependence of Th1 Cells on the Amino Acid Transporter SLC38A1 in Inflammation, bioRxiv
Gu S, Roderick HL, Camacho P, Jiang JX (2001) Characterization of an N-system amino acid transporter expressed in retina and its involvement in glutamine transport. J Biol Chem 276(26):24137–24144
Article PubMed CAS Google Scholar
Cia D, Vergnaud-Gauduchon J, Jacquemot N, Doly M (2014) Epigallocatechin gallate (EGCG) prevents H2O2-induced oxidative stress in primary rat retinal pigment epithelial cells. Curr Eye Res 39(9):944–952
Article PubMed CAS Google Scholar
Wen F, Wang Y, He D, Liao C, Ouyang W, Liu Z, Li W, Liao Y (2022) Primary culture of Porcine retinal pigment epithelial cells. J Vis Exp (187)
Chang YH, Kumar VB, Wen YT, Huang CY, Tsai RK, Ding DC (2022) Induction of human umbilical mesenchymal stem cell differentiation into retinal pigment epithelial cells using a Transwell-Based Co-culture system. Cell Transpl 31:9636897221085901
Qiu Y, Liu Y, Li WH, Zhang HQ, Tian XX, Fang WG (2018) P2Y2 receptor promotes the migration and invasion of breast cancer cells via EMT-related genes snail and E-cadherin. Oncol Rep 39(1):138–150
Zhou M, Geathers JS, Grillo SL, Weber SR, Wang W, Zhao Y, Sundstrom JM (2020) Role of Epithelial-Mesenchymal transition in retinal pigment epithelium dysfunction. Front Cell Dev Biol 8:501
Article PubMed PubMed Central Google Scholar
Ho J, Witkin AJ, Liu J, Chen Y, Fujimoto JG, Schuman JS, Duker JS (2011) Documentation of intraretinal retinal pigment epithelium migration via high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 118(4):687–693
Cortright DN, Meade R, Waters SM, Chenard BL, Krause JE (2009) C5a, but not C3a, increases VEGF secretion in ARPE-19 human retinal pigment epithelial cells. Curr Eye Res 34(1):57–61
Article PubMed CAS Google Scholar
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P (2018) Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation, Nutrients 10(11)
Frohlich E, Klessen C (2000) Glutamine synthetase and marker enzymes of the blood-retina barrier in fetal bovine retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 238(6):500–507
Article PubMed CAS Google Scholar
Perez-Estrada JR, Tangeman JA, Proto-Newton M, Sanaka H, Smucker B (2023) K. Del Rio-Tsonis, Distinct Metabolic States Direct Retinal Pigment Epithelium Cell Fate Decisions, bioRxiv
Li DD, Zhong BW, Zhang HX, Zhou HY, Luo J, Liu Y, Xu GC, Luan CS, Fang J (2016) Inhibition of the oxidative stress-induced miR-23a protects the human retinal pigment epithelium (RPE) cells from apoptosis through the upregulation of glutaminase and glutamine uptake. Mol Biol Rep 43(10):1079–1087
Article PubMed CAS Google Scholar
Bhattacharya D, Scime A (2019) Metabolic regulation of epithelial to mesenchymal transition: implications for endocrine Cancer. Front Endocrinol (Lausanne) 10:773
Fasoulakis Z, Koutras A, Ntounis T, Prokopakis I, Perros P, Chionis A, Sapantzoglou I, Katrachouras A, Konis K, Samara AA, Valsamaki A, Palios VC, Symeonidis P, Nikolettos K, Pagkalos A, Sotiriou S, Theodora M, Antsaklis P, Daskalakis G, Kontomanolis EN (2023) Ovarian Cancer and glutamine metabolism. Int J Mol Sci 24(5)
Bhowmick N, Posadas E, Ellis L, Freedland SJ, Vizio DD, Freeman MR, Theodorescu D, Figlin R, Gong J (2023) Targeting glutamine metabolism in prostate Cancer. Front Biosci (Elite Ed) 15(1):2
Article PubMed PubMed Central CAS Google Scholar
Imamura R, Kitagawa S, Kubo T, Irie A, Kariu T, Yoneda M, Kamba T, Imamura T (2021) Prostate cancer C5a receptor expression and augmentation of cancer cell proliferation, invasion, and PD-L1 expression by C5a. Prostate 81(3):147–156
Comments (0)