Smith LD, King E (1962) Clostridium innocuum, Sp. n., a Sp.reforming anaerobe isolated from human infections. J Bacteriol 83(4):938–939. https://doi.org/10.1128/jb.83.4.938-939.1962
Article CAS PubMed PubMed Central Google Scholar
Mohr C, Heine WE, Wutzke KD (1999) Clostridium innocuum: a glucoseureide-splitting inhabitant of the human intestinal tract. Biochim Biophys Acta 1472(3):550–554. https://doi.org/10.1016/s0304-4165(99)00162-2
Article CAS PubMed Google Scholar
Chia JH, Feng Y, Su LH, Wu TL, Chen CL, Liang YH, Chiu CH (2017) Clostridium innocuum is a significant vancomycin-resistant pathogen for extraintestinal clostridial infection. Clin Microbiol Infection: Official Publication Eur Soc Clin Microbiol Infect Dis 23(8):560–566. https://doi.org/10.1016/j.cmi.2017.02.025
Chia JH, Wu TS, Wu TL, Chen CL, Chuang CH, Su LH, Chang HJ, Lu CC, Kuo AJ, Lai HC, Chiu CH (2018) Clostridium innocuum is a vancomycin-resistant pathogen that May cause antibiotic-associated diarrhoea. Clin Microbiol Infection: Official Publication Eur Soc Clin Microbiol Infect Dis 24(11):1195–1199. https://doi.org/10.1016/j.cmi.2018.02.015
Crum-Cianflone N (2009) Clostridium innocuum bacteremia in a patient with acquired immunodeficiency syndrome. Am J Med Sci 337(6):480–482. https://doi.org/10.1097/MAJ.0b013e31819f1e95
Article PubMed PubMed Central Google Scholar
Cutrona AF, Watanakunakorn C, Schaub CR, Jagetia A (1995) Clostridium innocuum endocarditis. Clin Infect Diseases: Official Publication Infect Dis Soc Am 21(5):1306–1307. https://doi.org/10.1093/clinids/21.5.1306
Mutoh Y, Hirai R, Tanimura A, Matono T, Morino E, Kutsuna S, Nagamatsu M, Ohmagari N, Hagiwara S (2015) Osteomyelitis due to Clostridium innocuum in a patient with acute lymphoblastic leukemia: case report and literature review. SpringerPlus 4:385. https://doi.org/10.1186/s40064-015-1176-3
Article PubMed PubMed Central Google Scholar
Cherny KE, Muscat EB, Reyna ME, Kociolek LK (2021) Clostridium innocuum: Microbiological and clinical characteristics of a potential emerging pathogen. Anaerobe 71:102418. https://doi.org/10.1016/j.anaerobe.2021.102418
Article CAS PubMed PubMed Central Google Scholar
Hung YP, Lin HJ, Wu CJ, Chen PL, Lee JC, Liu HC, Wu YH, Yeh FH, Tsai PJ, Ko WC (2014) Vancomycin-resistant Clostridium innocuum bacteremia following oral Vancomycin for Clostridium difficile infection. Anaerobe 30:24–26. https://doi.org/10.1016/j.anaerobe.2014.07.009
Ackermann G, Tang YJ, Jang SS, Silva J, Rodloff AC, Cohen SH (2001) Isolation of Clostridium innocuum from cases of recurrent diarrhea in patients with prior Clostridium difficile associated diarrhea. Diagn Microbiol Infect Dis 40(3):103–106. https://doi.org/10.1016/s0732-8893(01)00259-0
Article CAS PubMed Google Scholar
Ha CWY, Martin A, Sepich-Poore GD, Shi B, Wang Y, Gouin K, Humphrey G, Sanders K, Ratnayake Y, Chan KSL, Hendrick G, Caldera JR, Arias C, Moskowitz JE, Ho Sui SJ, Yang S, Underhill D, Brady MJ, Knott S, Kaihara K, Steinbaugh MJ, Li H, McGovern DPB, Knight R, Fleshner P, Devkota S (2020) Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell 183(3):666–683e617. https://doi.org/10.1016/j.cell.2020.09.009
Article CAS PubMed PubMed Central Google Scholar
Serena C, Queipo-Ortuno M, Millan M, Sanchez-Alcoholado L, Caro A, Espina B, Menacho M, Bautista M, Monfort-Ferre D, Terron-Puig M, Nunez-Roa C, Maymo-Masip E, Rodriguez MM, Tinahones FJ, Espin E, Marti M, Fernandez-Veledo S, Vendrell J (2020) Microbial signature in adipose tissue of Crohn’s disease patients. J Clin Med 9(8):2448. https://doi.org/10.3390/jcm9082448
Article CAS PubMed PubMed Central Google Scholar
Ratzke C, Barrere J, Gore J (2020) Strength of species interactions determines biodiversity and stability in microbial communities. Nat Ecol Evol 4(3):376–383. https://doi.org/10.1038/s41559-020-1099-4
Kern L, Abdeen SK, Kolodziejczyk AA, Elinav E (2021) Commensal inter-bacterial interactions shaping the microbiota. Curr Opin Microbiol 63:158–171. https://doi.org/10.1016/j.mib.2021.07.011
Article CAS PubMed Google Scholar
Garcia-Garcera M, Rocha EPC (2020) Community diversity and habitat structure shape the repertoire of extracellular proteins in bacteria. Nat Commun 11(1):758. https://doi.org/10.1038/s41467-020-14572-x
Article CAS PubMed PubMed Central Google Scholar
Ilinskaya ON, Ulyanova VV, Yarullina DR, Gataullin IG (2017) Secretome of intestinal Bacilli: a natural guard against pathologies. Front Microbiol 8:1666. https://doi.org/10.3389/fmicb.2017.01666
Article PubMed PubMed Central Google Scholar
Elistratova AA, Matrosova LE, Khilyas IV, Shirshikova TV, Danilova IV, Laikov AV, Romanova YD, Sierra-Bakhshi CG, Sharipova MR, Bogomolnaya LM (2022) Serratia marcescens DUF1471-containing protein SrfN is needed for adaptation to acid and oxidative stresses. mSphere 7(6):e0021222. https://doi.org/10.1128/msphere.00212-22
Article CAS PubMed Google Scholar
Paria P, Chakraborty HJ, Behera BK (2022) Identification of novel salt tolerance-associated proteins from the secretome of Enterococcus faecalis. World J Microbiol Biotechnol 38(10):177. https://doi.org/10.1007/s11274-022-03354-w
Article CAS PubMed Google Scholar
Kumari K, Sharma PK, Singh RP (2023) Unraveling the virulence factors and secreted proteins of an environmental isolate Enterobacter Sp. S-16. Curr Microbiol 80(3):88. https://doi.org/10.1007/s00284-023-03197-0
Article CAS PubMed Google Scholar
Boetzkes A, Felkel KW, Zeiser J, Jochim N, Just I, Pich A (2012) Secretome analysis of Clostridium difficile strains. Arch Microbiol 194(8):675–687. https://doi.org/10.1007/s00203-012-0802-5
Article CAS PubMed Google Scholar
Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spectr 4(1):VMBF–0012. https://doi.org/10.1128/microbiolspec.VMBF-0012-2015
Toyofuku M, Schild S, Kaparakis-Liaskos M, Eberl L (2023) Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol 21(7):415–430. https://doi.org/10.1038/s41579-023-00875-5
Article CAS PubMed Google Scholar
Cao Y, Lin H (2021) Characterization and function of membrane vesicles in Gram-positive bacteria. Appl Microbiol Biotechnol 105(5):1795–1801. https://doi.org/10.1007/s00253-021-11140-1
Article CAS PubMed Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999
Article CAS PubMed Google Scholar
Hsu JL, Huang SY, Chow NH, Chen SH (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75(24):6843–6852. https://doi.org/10.1021/ac0348625
Article CAS PubMed Google Scholar
Teufel F, Almagro Armenteros JJ, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H (2022) SignalP 6.0 predicts all five types of signal peptides using protein Language models. Nat Biotechnol 40(7):1023–1025. https://doi.org/10.1038/s41587-021-01156-3
Article CAS PubMed PubMed Central Google Scholar
Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction–the phobius web server. Nucleic Acids Res 35:W429–432. Web Server issue10.1093/nar/gkm256
Comments (0)