Danner MT, Binns HC, Nguyen K, Johnson C, Dunn J, Niles D, Nguyen DK (2024) Resurgence of pediatric Mycoplasma pneumoniae infections in Southeast Texas, Nov 2023-June 2024. J Pediatr Infect Dis Soc. https://doi.org/10.1093/jpids/piae119
Zhang Y, Su C, Zhang Y, Ding S, Yan X, Zhang J, Tao Z (2025) Epidemiological and clinical characteristics of hospitalized pediatric patients with Mycoplasma pneumoniae pneumonia before and after the COVID-19 pandemic in China: a retrospective multicenter study. BMC Infect Dis 25. https://doi.org/10.1186/s12879-024-10370-8
Kildegaard H, Lassen AT (2024) Compromises in determination of Mycoplasma pneumoniae incidence. Lancet Reg Health Eur 47:101131. https://doi.org/10.1016/j.lanepe.2024.101131
Article PubMed PubMed Central Google Scholar
Denina M, Minero CM, Vitale R, Pini CM, Operti M, Garazzino S, Bondone C (2024) Real-World application of the memed BV test in differentiating bacterial, viral, and Mycoplasma pneumoniae infections in pediatric Community-Acquired pneumonia. J Infect Dis. https://doi.org/10.1093/infdis/jiae560
AlKadhem SM, Alradhi A, AlJubab HA, AlWadei AH (2024) Mycoplasma pneumoniae-Triggered Guillain-Barre syndrome in children: two case reports of different ICU presentations. Cureus 16:e74492. https://doi.org/10.7759/cureus.74492
Article PubMed PubMed Central Google Scholar
Dungu KHS, Holm M, Hartling U, Jensen LH, Nielsen AB, Schmidt LS, Toustrup LB, Hansen LH, Dahl KW, Matthesen KT et al (2024) Mycoplasma pneumoniae incidence, phenotype, and severity in children and adolescents in Denmark before, during, and after the COVID-19 pandemic: a nationwide multicentre population-based cohort study. Lancet Reg Health Eur 47:101103. https://doi.org/10.1016/j.lanepe.2024.101103
Article PubMed PubMed Central Google Scholar
Liew YCC, Choo KJL, Oh CC, Pang SM, Yeo YW, Lee HY (2022) Mycoplasma-induced Stevens-Johnson syndrome/toxic epidermal necrolysis: Case-control analysis of a cohort managed in a specialized center. J Am Acad Dermatol 86:811–817. https://doi.org/10.1016/j.jaad.2021.04.066
Jairaman A, Prakriya M (2024) Calcium signaling in airway epithelial cells: current Understanding and implications for inflammatory airway disease. Arterioscler Thromb Vasc Biol 44:772–783. https://doi.org/10.1161/ATVBAHA.123.318339
Article CAS PubMed PubMed Central Google Scholar
Hiemstra PS, McCray PB Jr., Bals R (2015) The innate immune function of airway epithelial cells in inflammatory lung disease. Eur Respir J 45:1150–1162. https://doi.org/10.1183/09031936.00141514
Article CAS PubMed PubMed Central Google Scholar
Jacobs E (1997) Mycoplasma infections of the human respiratory tract. Wien Klin Wochenschr 109:574–577
Prince OA, Krunkosky TM, Krause DC (2014) In vitro Spatial and Temporal analysis of Mycoplasma pneumoniae colonization of human airway epithelium. Infect Immun 82:579–586. https://doi.org/10.1128/IAI.01036-13
Article CAS PubMed PubMed Central Google Scholar
Qin L, Liu L, Wu Y, Chen Y, Wu Y, Luo H, Xi Y, Xiu F, Hu J, Chen L et al (2022) Mycoplasma pneumoniae downregulates RECK to promote matrix metalloproteinase-9 secretion by bronchial epithelial cells. Virulence 13:1270–1284. https://doi.org/10.1080/21505594.2022.2101746
Article CAS PubMed PubMed Central Google Scholar
He J, Xiu F, Chen Y, Yang Y, Liu H, Xi Y, Liu L, Li X, Wu Y, Luo H et al (2024) Aerobic Glycolysis of bronchial epithelial cells rewires Mycoplasma pneumoniae pneumonia and promotes bacterial elimination. Infect Immun 92:e0024823. https://doi.org/10.1128/iai.00248-23
Article CAS PubMed Google Scholar
Ryan DG, O’Neill LAJ (2020) Krebs cycle reborn in macrophage immunometabolism. Annu Rev Immunol 38:289–313. https://doi.org/10.1146/annurev-immunol-081619-104850
Article CAS PubMed Google Scholar
Ryan DG, Murphy MP, Frezza C, Prag HA, Chouchani ET, O’Neill LA, Mills EL (2019) Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat Metab 1:16–33. https://doi.org/10.1038/s42255-018-0014-7
Article CAS PubMed PubMed Central Google Scholar
Iacobazzi V, Infantino V (2014) Citrate–new functions for an old metabolite. Biol Chem 395:387–399. https://doi.org/10.1515/hsz-2013-0271
Article CAS PubMed Google Scholar
Diskin C, Ryan TAJ, O’Neill LAJ (2021) Modification of proteins by metabolites in immunity. Immunity 54:19–31. https://doi.org/10.1016/j.immuni.2020.09.014
Article CAS PubMed Google Scholar
Dominguez M, Brune B, Namgaladze D (2021) Exploring the role of ATP-Citrate lyase in the immune system. Front Immunol 12:632526. https://doi.org/10.3389/fimmu.2021.632526
Article CAS PubMed PubMed Central Google Scholar
Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM (2011) Acute lung injury in animals study, G. An official American thoracic society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44:725–738. https://doi.org/10.1165/rcmb.2009-0210ST
Article CAS PubMed PubMed Central Google Scholar
Shimizu T, Kida Y, Kuwano K (2005) A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-kappa B through TLR1, TLR2, and TLR6. J Immunol 175:4641–4646. https://doi.org/10.4049/jimmunol.175.7.4641
Article CAS PubMed Google Scholar
Balic JJ, Albargy H, Luu K, Kirby FJ, Jayasekara WSN, Mansell F, Garama DJ, De Nardo D, Baschuk N, Louis C et al (2020) STAT3 Serine phosphorylation is required for TLR4 metabolic reprogramming and IL-1beta expression. Nat Commun 11:3816. https://doi.org/10.1038/s41467-020-17669-5
Article CAS PubMed PubMed Central Google Scholar
Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE (2009) Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324:1713–1716. https://doi.org/10.1126/science.1171721
Article CAS PubMed PubMed Central Google Scholar
Tierney BJ, McCann GA, Naidu S, Rath KS, Saini U, Wanner R, Kuppusamy P, Suarez A, Goodfellow PJ, Cohn DE et al (2014) Aberrantly activated pSTAT3-Ser727 in human endometrial cancer is suppressed by HO-3867, a novel STAT3 inhibitor. Gynecol Oncol 135:133–141. https://doi.org/10.1016/j.ygyno.2014.07.087
Article CAS PubMed PubMed Central Google Scholar
Shi X, Zhang H, Paddon H, Lee G, Cao X, Pelech S (2006) Phosphorylation of STAT3 serine-727 by cyclin-dependent kinase 1 is critical for nocodazole-induced mitotic arrest. Biochemistry 45:5857–5867. https://doi.org/10.1021/bi052490j
Article CAS PubMed Google Scholar
Lauterbach MA, Hanke JE, Serefidou M, Mangan MSJ, Kolbe CC, Hess T, Rothe M, Kaiser R, Hoss F, Gehlen J et al (2019) Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-Citrate lyase. Immunity 51(e1017):997–1011. https://doi.org/10.1016/j.immuni.2019.11.009
Article CAS PubMed Google Scholar
Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080. https://doi.org/10.1126/science.1164097
Article CAS PubMed PubMed Central Google Scholar
Wang D, Bu F, Yang G, Brenke H, Liu B (2024) Structure of the endogenous insect acetyl-coA carboxylase carboxyltransferase domain. J Biol Chem 300:107800. https://doi.org/10.1016/j.jbc.2024.107800
Article CAS PubMed PubMed Central Google Scholar
Galvan-Pena S, Carroll RG, Newman C, Hinchy EC, Palsson-McDermott
Comments (0)