Gonzalez BE, Martinez-Aguilar G, Hulten KG, Hammerman WA, Coss-Bu J, Avalos-Mishaan A, Mason EO Jr., Kaplan SL (2005) Severe Staphylococcal sepsis in adolescents in the era of community-acquired methicillin-resistant Staphylococcus aureus. Pediatrics 115:642–648. https://doi.org/10.1542/peds.2004-2300
Kwiecinski JM, Horswill AR (2020) Staphylococcus aureus bloodstream infections: pathogenesis and regulatory mechanisms. Curr Opin Microbiol 53:51–60. https://doi.org/10.1016/j.mib.2020.02.005
Article PubMed PubMed Central CAS Google Scholar
Salgado-Pabon W, Breshears L, Spaulding AR, Merriman JA, Stach CS, Horswill AR, Peterson ML, Schlievert PM (2013) Superantigens are critical for Staphylococcus aureus infective endocarditis, sepsis, and acute kidney injury. mBio 4. https://doi.org/10.1128/mBio.00494-13
Nasser A, Azimi T, Ostadmohammadi S, Ostadmohammadi S (2020) A comprehensive review of bacterial osteomyelitis with emphasis on Staphylococcus aureus. Microb Pathog 148:104431. https://doi.org/10.1016/j.micpath.2020.104431
Article PubMed CAS Google Scholar
Jensen AG, Espersen F, Skinhoj P, Rosdahl VT, Frimodt-Moller N (1997) Increasing frequency of vertebral osteomyelitis following Staphylococcus aureus bacteraemia in Denmark 1980–1990. J Infect 34:113–118. https://doi.org/10.1016/s0163-4453(97)92395-1
Article PubMed CAS Google Scholar
Labandeira-Rey M, Couzon F, Boisset S, Brown EL, Bes M, Benito Y, Barbu EM, Vazquez V, Hook M, Etienne J et al (2007) Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315:1130–1133. https://doi.org/10.1126/science.1137165
Article PubMed CAS Google Scholar
Self WH, Wunderink RG, Williams DJ, Zhu Y, Anderson EJ, Balk RA, Fakhran SS, Chappell JD, Casimir G, Courtney DM et al (2016) Staphylococcus aureus Community-acquired pneumonia: prevalence, clinical characteristics, and outcomes. Clin Infect Dis 63:300–309. https://doi.org/10.1093/cid/ciw300
Article PubMed PubMed Central CAS Google Scholar
Rubinstein E, Kollef MH, Nathwani D (2008) Pneumonia caused by methicillin-resistant Staphylococcus aureus. Clin Infect Dis 46(Suppl 5):S378–385. https://doi.org/10.1086/533594
Sakoulas G, Moellering RC Jr. (2008) Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin Infect Dis 46(Suppl 5):S360–367. https://doi.org/10.1086/533592
Article PubMed CAS Google Scholar
Guo Y, Song G, Sun M, Wang J, Wang Y (2020) Prevalence and therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol 10:107. https://doi.org/10.3389/fcimb.2020.00107
Article PubMed PubMed Central Google Scholar
deJ N.W.M., vanK K.P.M., vanS J.A.G. (2019) Immune evasion by Staphylococcus aureus. Microbiol Spectr 7. https://doi.org/10.1128/microbiolspec.GPP3-0061-2019
Thammavongsa V, Kim HK, Missiakas D, Schneewind O (2015) Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 13:529–543. https://doi.org/10.1038/nrmicro3521
Article PubMed PubMed Central CAS Google Scholar
Ferens WA, Bohach GA (2000) Persistence of Staphylococcus aureus on mucosal membranes: superantigens and internalization by host cells. J Lab Clin Med 135:225–230. https://doi.org/10.1067/mlc.2000.105179
Article PubMed CAS Google Scholar
Watkins KE, Unnikrishnan M (2020) Evasion of host defenses by intracellular Staphylococcus aureus. Adv Appl Microbiol 112:105–141. https://doi.org/10.1016/bs.aambs.2020.05.001
Article PubMed CAS Google Scholar
Loffler B, Tuchscherr L, Niemann S, Peters G (2014) Staphylococcus aureus persistence in non-professional phagocytes. Int J Med Microbiol 304:170–176. https://doi.org/10.1016/j.ijmm.2013.11.011
Article PubMed CAS Google Scholar
Hamza T, Dietz M, Pham D, Clovis N, Danley S, Li B (2013) Intra-cellular Staphylococcus aureus alone causes infection in vivo. Eur Cell Mater 25:341–350 discussion 350. https://doi.org/10.22203/ecm.v025a24
Article PubMed PubMed Central CAS Google Scholar
Foster TJ, Geoghegan JA, Ganesh VK, Hook M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62. https://doi.org/10.1038/nrmicro3161
Article PubMed PubMed Central CAS Google Scholar
Josse J, Laurent F, Diot A (2017) Staphylococcal adhesion and host cell invasion: Fibronectin-Binding and other mechanisms. Front Microbiol 8:2433. https://doi.org/10.3389/fmicb.2017.02433
Article PubMed PubMed Central Google Scholar
Hauck CR, Ohlsen K (2006) Sticky connections: extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus. Curr Opin Microbiol 9:5–11. https://doi.org/10.1016/j.mib.2005.12.002
Article PubMed CAS Google Scholar
Fowler T, Wann ER, Joh D, Johansson S, Foster TJ, Hook M (2000) Cellular invasion by Staphylococcus aureus involves a fibronectin Bridge between the bacterial fibronectin-binding MSCRAMMs and host cell beta1 integrins. Eur J Cell Biol 79:672–679. https://doi.org/10.1078/0171-9335-00104
Article PubMed CAS Google Scholar
Grundmeier M, Hussain M, Becker P, Heilmann C, Peters G, Sinha B (2004) Truncation of fibronectin-binding proteins in Staphylococcus aureus strain Newman leads to deficient adherence and host cell invasion due to loss of the cell wall anchor function. Infect Immun 72:7155–7163. https://doi.org/10.1128/IAI.72.12.7155-7163.2004
Article PubMed PubMed Central CAS Google Scholar
Sinha B, Francois PP, Nusse O, Foti M, Hartford OM, Vaudaux P, Foster TJ, Lew DP, Herrmann M, Krause KH (1999) Fibronectin-binding protein acts as Staphylococcus aureus Invasin via fibronectin bridging to integrin alpha5beta1. Cell Microbiol 1:101–117. https://doi.org/10.1046/j.1462-5822.1999.00011.x
Article PubMed CAS Google Scholar
Van Tran G, Isberg RR (1993) Bacterial internalization mediated by beta 1 chain integrins is determined by ligand affinity and receptor density. EMBO J 12:1887–1895. https://doi.org/10.1002/j.1460-2075.1993.tb05837.x
Zapotoczna M, Jevnikar Z, Miajlovic H, Kos J, Foster TJ (2013) Iron-regulated surface determinant B (IsdB) promotes Staphylococcus aureus adherence to and internalization by non-phagocytic human cells. Cell Microbiol 15:1026–1041. https://doi.org/10.1111/cmi.12097
Article PubMed CAS Google Scholar
Askarian F, Ajayi C, Hanssen AM, van Sorge NM, Pettersen I, Diep DB, Sollid JU, Johannessen M (2016) The interaction between Staphylococcus aureus SdrD and Desmoglein 1 is important for adhesion to host cells. Sci Rep 6:22134. https://doi.org/10.1038/srep22134
Article PubMed PubMed Central CAS Google Scholar
Corrigan RM, Miajlovic H, Foster TJ (2009) Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol 9:22. https://doi.org/10.1186/1471-2180-9-22
Article PubMed PubMed Central CAS Google Scholar
Claes J, Liesenborghs L, Peetermans M, Veloso TR, Missiakas D, Schneewind O, Mancini S, Entenza JM, Hoylaerts MF, Heying R et al (2017) Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall. J Thromb Haemost 15:1009–1019. https://doi.org/10.1111/jth.13653
Article PubMed PubMed Central CAS Google Scholar
McDonnell CJ, Garciarena CD, Watkin RL, McHale TM, McLoughlin A, Claes J, Verhamme P, Cummins PM, Kerrigan SW (2016) Inhibition of major integrin alpha(V) beta(3) reduces Staphylococcus aureus attachment to sheared human endothelial cells. J Thromb Haemost 14:2536–2547. https://doi.org/10.1111/jth.13501
Comments (0)