Fighting biofilm: bacteriophages eliminate biofilm formed by multidrug-resistant on urological catheters

WHO (2024) WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Available online: https://www.who.int/publications/i/item/9789240093461 Accessed on 2 Dec 2024

Janda JM, Abbott SL (2021) The changing face of the family Enterobacteriaceae (order: “Enterobacterales”): new members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin Microbiol Rev 34(2):e00174-20. https://doi.org/10.1128/CMR.00174-20

Article  PubMed  PubMed Central  Google Scholar 

Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis 48(1):1–12. https://doi.org/10.1086/595011

Article  PubMed  Google Scholar 

De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ (2020) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 33(3):e00181-19. https://doi.org/10.1128/CMR.00181-19

Article  PubMed  PubMed Central  Google Scholar 

Miller WR, Arias CA (2024) ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol 22(10):598–616. https://doi.org/10.1038/s41579-024-01054-w

Article  CAS  PubMed  Google Scholar 

Ramirez D, Giron M (2023) Enterobacter infections. StatPearls, Treasure Island (FL). https://europepmc.org/article/nbk/nbk559296

Salimiyan Rizi K, Ghazvini K, Farsiani H (2019) Clinical and pathogenesis overview of Enterobacter infections. Rev Clin Med 6(4):146–154. https://doi.org/10.22038/rcm.2020.44468.1296

Article  Google Scholar 

Davin-Regli A, Lavigne JP, Pagès JM (2019) Enterobacter spp.: Update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin Microbiol Rev 32(4):e00002-19. https://doi.org/10.1128/CMR.00002-19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Temsaah HR, Azmy AF, Ahmed AE, Elshebrawy HA, Kasem NG, El-Gohary FA, Lood C, Lavigne R, Abdelkader K (2024) Characterization and genomic analysis of the lytic bacteriophage vB_EclM_HK6 as a potential approach to biocontrol the spread of Enterobacter cloacae contaminating food. BMC Microbiol 24(1):408. https://doi.org/10.1186/s12866-024-03541-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wójcicki M, Średnicka P, Błażejak S, Gientka I, Kowalczyk M, Emanowicz P, Świder O, Sokołowska B, Juszczuk-Kubiak E (2021) Characterization and genome study of novel lytic bacteriophages against prevailing saprophytic bacterial microflora of minimally processed plant-based food products. Int J Mol Sci 22(22):12460. https://doi.org/10.3390/ijms222212460

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han M, Liu C, Xie H, Zheng J, Zhang Y, Li C, Shen H, Cao X (2023) Genomic and clinical characteristics of carbapenem-resistant Enterobacter cloacae complex isolates collected in a Chinese tertiary hospital during 2013–2021. Front Microbiol 14:1127948. https://doi.org/10.3389/fmicb.2023.1127948

Article  PubMed  PubMed Central  Google Scholar 

Mosaffa F, Saffari F, Veisi M, Tadjrobehkaret O (2024) Some virulence genes are associated with antibiotic susceptibility in Enterobacter cloacae complex. BMC Infect Dis 24:711. https://doi.org/10.1186/s12879-024-09608-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganbold M, Seo J, Wi YM, Kwon KT, Ko KS (2023) Species identification, antibiotic resistance, and virulence in Enterobacter cloacae complex clinical isolates from South Korea. Front Microbiol 14:1122691. https://doi.org/10.3389/fmicb.2023.1122691

Article  PubMed  PubMed Central  Google Scholar 

Høiby N (2017) A short history of microbial biofilms and biofilm infections. APMIS 125(4):272–275. https://doi.org/10.1111/apm.12686

Article  PubMed  Google Scholar 

Du Toit A (2024) Bacterial architects build the biofilm structures. Nat Rev Microbiol 22(4):187. https://doi.org/10.1038/s41579-024-01020-6

Article  CAS  PubMed  Google Scholar 

Rather MA, Gupta K, Mandal M (2021) Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 52(4):1701–1718. https://doi.org/10.1007/s42770-021-00624-x

Article  PubMed  PubMed Central  Google Scholar 

Miao B, Wang D, Yu L, Meng X, Liu S, Gao M, Han J, Chen Z, Li P, Liu S (2024) Mechanism and nanotechnological-based therapeutics for tolerance and resistance of bacterial biofilms. Microbiol Res 292:127987. https://doi.org/10.1016/j.micres.2024.127987

Article  CAS  PubMed  Google Scholar 

Misra T, Tare M, Jha PN (2022) Insights Into the dynamics and composition of biofilm formed by environmental isolate of Enterobacter cloacae. Front Microbiol 13:877060. https://doi.org/10.3389/fmicb.2022.877060

Article  PubMed  PubMed Central  Google Scholar 

Ragupathi NKD, Muthuirulandi Sethuvel DP, Gopikrishnan M, Dwarakanathan HT, Murugan D, Biswas I, Bakthavachalam YD, Murugesan M, George Priya Doss C, Monk PN, Karunakaran E, Veeraraghavan B (2023) Phage-based therapy against biofilm producers in gram-negative ESKAPE pathogens. Microb Pathog 178:106064. https://doi.org/10.1016/j.micpath.2023.106064

Article  CAS  PubMed  Google Scholar 

Werneburg GT (2022) Catheter-associated urinary tract infections: current challenges and future prospects. Res Rep Urol 14:109–133. https://doi.org/10.2147/RRU.S273663

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramadan R, Omar N, Dawaba M, Moemen D (2021) Bacterial biofilm dependent catheter associated urinary tract infections: characterization, antibiotic resistance pattern and risk factors. EJBAS 8(1):64–74. https://doi.org/10.1080/2314808X.2021.1905464

Article  Google Scholar 

Sabir N, Ikram A, Zaman G, Satti L, Gardezi A, Ahmed A, Ahmed P (2017) Bacterial biofilm-based catheter-associated urinary tract infections: causative pathogens and antibiotic resistance. Am J Infect Control 45(10):1101–1105. https://doi.org/10.1016/j.ajic.2017.05.009

Article  PubMed  Google Scholar 

Ramos-Vivas J, Chapartegui-González I, Fernández-Martínez M, González-Rico C, Fortún J, Escudero R, Marco F, Linares L, Montejo M, Aranzamendi M, Muñoz P, Valerio M, Aguado JM, Resino E, Ahufinger IG, Vega AP, Martínez-Martínez L, Fariñas MC, ENTHERE Study Group, the Group for Study of Infection in Transplantation of the Spanish Society of Infectious Diseases and Clinical Microbiology (GESITRA-SEIMC) and the Spanish Network for Research in Infectious Diseases (REIPI) (2019) Biofilm formation by multidrug resistant Enterobacteriaceae strains isolated from solid organ transplant recipients. Sci Rep 9(1):8928. https://doi.org/10.1038/s41598-019-45060-y. Erratum in 2020: Sci Rep 10(1):7452. https://doi.org/10.1038/s41598-020-60496-3

Ciszek-Lenda M, Majka G, Suski M, Walczewska M, Górska S, Golińska E, Fedor A, Gamian A, Olszanecki R, Strus M, Marcinkiewicz J (2023) Biofilm-forming strains of P. aeruginosa and S. aureus isolated from cystic fibrosis patients differently affect inflammatory phenotype of macrophages. Inflamm Res 72(6):1275–1289. https://doi.org/10.1007/s00011-023-01743-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vestweber PK, Wächter J, Planz V, Jung N, Windbergs M (2024) The interplay of Pseudomonas aeruginosa and Staphylococcus aureus in dual-species biofilms impacts development, antibiotic resistance and virulence of biofilms in in vitro wound infection models. PLoS One 19(5):e0304491. https://doi.org/10.1371/journal.pone.0304491

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abedon ST (2011) Bacteriophages and biofilms: ecology, phage therapy, plaques. Nova Science Publishers, New York

Google Scholar 

Marcinkiewicz J, Strus M, Pasich E (2013) Antibiotic resistance: a “dark side” of biofilm-associated chronic infections. Pol Arch Med Wewn 123(6):309–313. https://doi.org/10.20452/pamw.1780

Article  PubMed  Google Scholar 

Marongiu L, Burkard M, Lauer UM, Hoelzle LE, Venturelli S (2022) Reassessment of historical clinical trials supports the effectiveness of phage therapy. Clin Microbiol Rev 35(4):e00062-22. https://doi.org/10.1128/cmr.00062-22

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elfadadny A, Ragab RF, Abou Shehata MA, Elfadadny MR, Farag A, Abd El-Aziz AH, Khalifa HO (2024) Exploring bacteriophage applications in medicine and beyond. Acta Microbiol Hell 69:167–179. https://doi.org/10.3390/amh69030016

Article  Google Scholar 

Pal N, Sharma P, Kumawat M, Singh S, Verma V, Tiwari R, Sarma DK, Nagpal R, Kumar M (2024) Phage therapy: an alternative treatment modality for MDR bacterial infections. Infect Dis 56(10):785–817. https://doi.org/10.1080/23744235.2024.2379492

Article 

Comments (0)

No login
gif