Sözen, S., Emir, S., Tükenmez, M., Topuz, Ö.: The results of surgical treatment for hepatic hydatid disease. Hippokratia. 15(4), 327 (2011)
PubMed PubMed Central Google Scholar
Wu, M., Yan, C., Wang, X., Liu, Q., Liu, Z., Song, T.: Automatic classification of hepatic cystic echinococcosis using ultrasound images and deep learning. J Ultrasound Med. 41(1), 163–174 (2022) 10.1002/jum.15691
Chávez-Ruvalcaba, F., Chávez-Ruvalcaba, M., Santibañez, K.M., Muñoz-Carrillo, J., Coria, A.L., Martínez, R.R.: Foodborne parasitic diseases in the neotropics-a review. Helminthologia. 58(2), 119–133 (2021) https://doi.org/10.2478/helm-2021-0022
Article CAS PubMed PubMed Central Google Scholar
Khemasuwan, D., Farver, C.F., Mehta, A.C.: Parasites of the air passages. Chest. 145(4), 883–895 (2014) https://doi.org/10.1378/chest.13-2072
Acar, A., Rodop, O., Yenilmez, E., Baylan, O., Oncül, O.: Case report: primary localization of a hydatid cyst in the adductor brevis muscle. Turkiye Parazitol Derg. 33(2), 174–176 (2009)
Padayachy, L., Ozek, M.: Hydatid disease of the brain and spine. Childs Nerv Syst. 39(3), 751–758 (2023) https://doi.org/10.1007/s00381-022-05770-7
Article CAS PubMed Google Scholar
Derbel, F., Mabrouk, M.B., Hamida, M.B.H., Mazhoud, J., Youssef, S., Ali, A.B., Jemni, H., Mama, N., Ibtissem, H., Nadia, A., Ouni, C.E., Naija, W., Mokni, M., Hamida, R.B.H.: Hydatid cysts of the liver diagnosis, complications and treatment. In: Derbel, F. (ed.) Abdominal Surgery. IntechOpen, Rijeka (2012). Chap. 5. https://doi.org/10.5772/48433
Marrone, G., Caruso, S., Mamone, G., Carollo, V., Milazzo, M., Gruttadauria, S., Luca, A., Gridelli, B., et al.: Multidisciplinary imaging of liver hydatidosis. World J Gastroenterol. 18(13), 1438–1447 (2012) https://doi.org/10.3748/wjg.v18.i13.1438
Article PubMed PubMed Central Google Scholar
Gharbi, H.A., Hassine, W., Brauner, M.W., Dupuch, K.: Ultrasound examination of the hydatic liver. Radiology. 139(2), 459–463 (1981) https://doi.org/10.1148/radiology.139.2.7220891
Article CAS PubMed Google Scholar
Al-Ani, I.M., Mahdi, M.B., Khalaf, G.M.: Application of ultrasound classification of hepatic hydatid cyst in iraqi population. Al-Anbar Medical Journal. 16(1), 3–7 (2020) https://doi.org/10.33091/amj.2020.170928
Xin, S., Shi, H., Jide, A., Zhu, M., Ma, C., Liao, H.: Automatic lesion segmentation and classification of hepatic echinococcosis using a multiscale-feature convolutional neural network. Med Biol Eng Comput. 58, 659–668 (2020) https://doi.org/10.1007/s11517-020-02126-8
Toğaçar, M., Cömert, Z., Ergen, B.: Intelligent skin cancer detection applying autoencoder, MobileNetV2 and spiking neural networks. Chaos Solitons Fractals. 144, 110714 (2021) https://doi.org/10.1016/j.chaos.2021.110714
Cömert, Z., Sbrollini, A., Demircan, F., Burattini, L.: Computerized otoscopy image-based artificial intelligence model utilizing deep features provided by vision transformer, grid search optimization, and support vector machine for otitis media diagnosis. Neural Comput Appl. 36(36), 23113–23129 (2024) https://doi.org/10.1007/s00521-024-10457-y
Abinaya, K., Sivakumar, B.: A deep learning-based approach for cervical cancer classification using 3D CNN and vision transformer. J Imaging Inform Med. 37(1), 280 (2024) https://doi.org/10.1007/s10278-023-00911-z
Paraddy, S., Virupakshappa: Addressing challenges in skin cancer diagnosis: A convolutional swin transformer approach. J Imaging Inform Med, 1–21 (2024) https://doi.org/10.1007/s10278-024-01290-9
Gul, Y., Muezzinoglu, T., Kilicarslan, G., Dogan, S., Tuncer, T.: Application of the deep transfer learning framework for hydatid cyst classification using CT images. Soft Comput. 27(11), 7179–7189 (2023) https://doi.org/10.1007/s00500-023-07945-z
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis. 128, 336–359 (2020) https://doi.org/10.1007/S11263-019-01228-7
Jahmunah, V., Ng, E.Y., Tan, R.-S., Oh, S.L., Acharya, U.R.: Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals. Comput Biol Med. 146, 105550 (2022) https://doi.org/10.1016/J.COMPBIOMED.2022.105550
Tasci, B., Tasci, I.: Deep feature extraction based brain image classification model using preprocessed images: PDRNet. Biomed Signal Process Control. 78, 103948 (2022) https://doi.org/10.1016/J.BSPC.2022.103948
Yildirim, M.: Image visualization and classification using hydatid cyst images with an explainable hybrid model. Appl Sci. 13(17), 9926 (2023) https://doi.org/10.3390/app13179926
Arnold, V.I., Avez, A.: Ergodic problems of classical mechanics. (No Title). (1968) https://cir.nii.ac.jp/crid/1130282273312514176
Bao, J., Yang, Q.: Period of the discrete arnold cat map and general cat map. Nonlinear Dyn. 70, 1365–1375 (2012) https://doi.org/10.1007/S11071-012-0539-3
Peterson, L.E.: K-nearest neighbor. Scholarpedia. 4(2), 1883 (2009) https://doi.org/10.4249/SCHOLARPEDIA.1883
Erten, M., Tuncer, I., Barua, P.D., Yildirim, K., Dogan, S., Tuncer, T., Tan, R.-S., Fujita, H., Acharya, U.R.: Automated urine cell image classification model using chaotic mixer deep feature extraction. J Digit Imaging. 36(4), 1675–1686 (2023) https://doi.org/10.1007/S10278-023-00827-8
Article PubMed PubMed Central Google Scholar
Poyraz, A.K., Dogan, S., Akbal, E., Tuncer, T.: Automated brain disease classification using exemplar deep features. Biomed Signal Process Control. 73, https://doi.org/10.1016/j.bspc.2021.103448
Aslan, N., Koca, G.O., Kobat, M.A., Dogan, S.: Multi-classification deep CNN model for diagnosing COVID-19 using iterative neighborhood component analysis and iterative ReliefF feature selection techniques with X-ray images. Chemom Intell Lab Syst. 224, 104539 (2022) https://doi.org/10.1016/j.chemolab.2022.104539
Tegshee, T., Dorjsuren, T., Lee, S., Batjargal, D.: A study on staging cystic echinococcosis using machine learning methods. Bioengineering. 12(2), 181 (2025)
Article PubMed PubMed Central Google Scholar
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems. 30 (2017)
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. (2020)
Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: A survey. ACM Comput Surv. 54(10s), 1–41 (2022) https://doi.org/10.1145/3505244
Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A., Li, Y.: MaxViT: Multi-axis vision transformer. In: Avidan, S., Brostow, G., Cissè, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. Lecture Notes in Computer Science, vol. 13664, pp. 459–479. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20053-3_27
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022 (2021). https://doi.org/10.1109/ICCV48922.2021.00986
Pacal, I.: A novel swin transformer approach utilizing residual multi-layer perceptron for diagnosing brain tumors in mri images. International Journal of Machine Learning and Cybernetics. 15(9), 3579–3597 (2024) https://doi.org/10.1007/s13042-024-02110-w
Zhang, C., Wang, L., Cheng, S., Li, Y.: SwinSUNet: Pure transformer network for remote sensing image change detection. IEEE Trans Geosci Remote Sens. 60, 1–13 (2022) https://doi.org/10.1109/TGRS.2022.3160007
Gong, H., Mu, T., Li, Q., Dai, H., Li, C., He, Z., Wang, W., Han, F., Tuniyazi, A., Li, H., et al.: Swin-transformer-enabled YOLOv5 with attention mechanism for small object detection on satellite images. Remote Sens. 14(12), 2861 (2022) https://doi.org/10.3390/rs14122861
Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-unet: Unet-like pure transformer for medical image segmentation. In: European Conference on Computer Vision, pp. 205–218 (2022). https://doi.org/10.1007/978-3-031-25066-8_9 . Springer
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In: International MICCAI Brainlesion Workshop, pp. 272–284 (2021). https://doi.org/10.1007/978-3-031-08999-2_22 . Springer
Goldberger, J., Hinton, G.E., Roweis, S., Salakhutdinov, R.R.: Neighbourhood components analysis. Advances in neural information processing systems. 17 (2004)
Liu, H., Cui, G., Luo, Y., Guo, Y., Zhao, L., Wang, Y., Subasi, A., Dogan, S., Tuncer, T.: Artificial intelligence-based breast cancer diagnosis using ultrasound images and grid-based deep feature generator. International Journal of General Medicine, 2271–2282 (2022) https://doi.org/10.2147/IJGM.S347491
Barua, P.D., Baygin, N., Dogan, S., Baygin, M., Arunkumar, N., Fujita, H., Tuncer, T., Tan, R.-S., Palmer, E., Azizan, M.M.B., et al.: Automated detection of pain levels using deep feature extraction from shutter blinds-based dynamic-sized horizontal patches with facial images. Sci Rep. 12(1), 17297 (2022) https://doi.org/10.1038/s41598-022-21380-4
Article CAS PubMed PubMed Central Google Scholar
Rasheed, J., Shubair, R.M.: Screening lung diseases using cascaded feature generation and selection strategies. Healthcare (Basel). 10(7), 1313 (2022) https://doi.org/10.3390/healthcare10071313
Article PubMed PubMed Central Google Scholar
Kaplan, E., Ekinci, T., Kaplan, S., Barua, P.D., Dogan, S., Tuncer, T., Tan, R.-S., Arunkumar, N., Acharya, U.R.: Pfp-lhcinca: Pyramidal fixed-size patch-based feature extraction and chi-square iterative neighborhood component analysis for automated fetal sex classification on ultrasound images. Contrast Media & Molecular Imaging. 2022(1), 6034971 (2022) https://doi.org/10.1155/2022/6034971
Tasci, B., Tasci, G., Ayyildiz, H., Kamath, A.P., Barua, P.D., Tuncer, T., Dogan, S., Ciaccio, E.J., Chakraborty, S., Acharya, U.R.: Automated schizophrenia detection model using blood sample scattergram images and local binary pattern. Multimedia Tools Appl. 83(14), 42735–42763 (2024) https://doi.org/10.1007/s11042-023-16676-0
Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J Big Data. 3(1), 9 (2016) https://doi.org/10.1186/s40537-016-0043-6
Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27, pp. 270–279 (2018). https://doi.org/10.1007/978-3-030-01424-7_27. Springer
Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2661–2671 (2019). https://doi.org/10.48550/arXiv.1805.08974
Wang, Y., Sun, D., Chen, K., Lai, F., Chowdhury, M.: Egeria: Efficient dnn training with knowledge-guided layer freezing. In: Proceedings of the Eighteenth European Conference on Computer Systems, pp. 851–866 (2023). https://doi.org/10.1145/3552326.3587451
Yang, L., Lin, S., Zhang, F., Zhang, J., Fan, D.: Efficient self-supervised continual learning with progressive task-correlated layer freezing. In: 2025 26th International Symposium on Quality Electronic Design (ISQED), pp. 1–8 (2025). https://doi.org/10.1109/ISQED65160.2025.11014440 . IEEE
Frégier, Y., Gouray, J.-B.: Mind2mind: transfer learning for GANs. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information (GSI 2021). Lecture Notes in Computer Science, vol. 12829, pp. 851–859. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80209-7_91
Davila, A., Colan, J., Hasegawa, Y.: Comparison of fine-tuning strategies for transfer learning in medical image classification. Image Vis Comput. 146, 105012 (2024) https://doi.org/10.1016/j.imavis.2024.105012
Kim, H.E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M.E., Ganslandt, T.: Transfer learning for medical image classification: a literature review. BMC Med Imaging. 22(1), 69 (2022) https://doi.org/10.1186/s12880-022-00793-7
Comments (0)