Vision Transformers-Based Deep Feature Generation Framework for Hydatid Cyst Classification in Computed Tomography Images

Sözen, S., Emir, S., Tükenmez, M., Topuz, Ö.: The results of surgical treatment for hepatic hydatid disease. Hippokratia. 15(4), 327 (2011)

PubMed  PubMed Central  Google Scholar 

Wu, M., Yan, C., Wang, X., Liu, Q., Liu, Z., Song, T.: Automatic classification of hepatic cystic echinococcosis using ultrasound images and deep learning. J Ultrasound Med. 41(1), 163–174 (2022) 10.1002/jum.15691

Article  PubMed  Google Scholar 

Chávez-Ruvalcaba, F., Chávez-Ruvalcaba, M., Santibañez, K.M., Muñoz-Carrillo, J., Coria, A.L., Martínez, R.R.: Foodborne parasitic diseases in the neotropics-a review. Helminthologia. 58(2), 119–133 (2021) https://doi.org/10.2478/helm-2021-0022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khemasuwan, D., Farver, C.F., Mehta, A.C.: Parasites of the air passages. Chest. 145(4), 883–895 (2014) https://doi.org/10.1378/chest.13-2072

Article  PubMed  Google Scholar 

Acar, A., Rodop, O., Yenilmez, E., Baylan, O., Oncül, O.: Case report: primary localization of a hydatid cyst in the adductor brevis muscle. Turkiye Parazitol Derg. 33(2), 174–176 (2009)

PubMed  Google Scholar 

Padayachy, L., Ozek, M.: Hydatid disease of the brain and spine. Childs Nerv Syst. 39(3), 751–758 (2023) https://doi.org/10.1007/s00381-022-05770-7

Article  CAS  PubMed  Google Scholar 

Derbel, F., Mabrouk, M.B., Hamida, M.B.H., Mazhoud, J., Youssef, S., Ali, A.B., Jemni, H., Mama, N., Ibtissem, H., Nadia, A., Ouni, C.E., Naija, W., Mokni, M., Hamida, R.B.H.: Hydatid cysts of the liver diagnosis, complications and treatment. In: Derbel, F. (ed.) Abdominal Surgery. IntechOpen, Rijeka (2012). Chap. 5. https://doi.org/10.5772/48433

Marrone, G., Caruso, S., Mamone, G., Carollo, V., Milazzo, M., Gruttadauria, S., Luca, A., Gridelli, B., et al.: Multidisciplinary imaging of liver hydatidosis. World J Gastroenterol. 18(13), 1438–1447 (2012) https://doi.org/10.3748/wjg.v18.i13.1438

Article  PubMed  PubMed Central  Google Scholar 

Gharbi, H.A., Hassine, W., Brauner, M.W., Dupuch, K.: Ultrasound examination of the hydatic liver. Radiology. 139(2), 459–463 (1981) https://doi.org/10.1148/radiology.139.2.7220891

Article  CAS  PubMed  Google Scholar 

Al-Ani, I.M., Mahdi, M.B., Khalaf, G.M.: Application of ultrasound classification of hepatic hydatid cyst in iraqi population. Al-Anbar Medical Journal. 16(1), 3–7 (2020) https://doi.org/10.33091/amj.2020.170928

Xin, S., Shi, H., Jide, A., Zhu, M., Ma, C., Liao, H.: Automatic lesion segmentation and classification of hepatic echinococcosis using a multiscale-feature convolutional neural network. Med Biol Eng Comput. 58, 659–668 (2020) https://doi.org/10.1007/s11517-020-02126-8

Toğaçar, M., Cömert, Z., Ergen, B.: Intelligent skin cancer detection applying autoencoder, MobileNetV2 and spiking neural networks. Chaos Solitons Fractals. 144, 110714 (2021) https://doi.org/10.1016/j.chaos.2021.110714

Cömert, Z., Sbrollini, A., Demircan, F., Burattini, L.: Computerized otoscopy image-based artificial intelligence model utilizing deep features provided by vision transformer, grid search optimization, and support vector machine for otitis media diagnosis. Neural Comput Appl. 36(36), 23113–23129 (2024) https://doi.org/10.1007/s00521-024-10457-y

Article  Google Scholar 

Abinaya, K., Sivakumar, B.: A deep learning-based approach for cervical cancer classification using 3D CNN and vision transformer. J Imaging Inform Med. 37(1), 280 (2024) https://doi.org/10.1007/s10278-023-00911-z

Article  Google Scholar 

Paraddy, S., Virupakshappa: Addressing challenges in skin cancer diagnosis: A convolutional swin transformer approach. J Imaging Inform Med, 1–21 (2024) https://doi.org/10.1007/s10278-024-01290-9

Gul, Y., Muezzinoglu, T., Kilicarslan, G., Dogan, S., Tuncer, T.: Application of the deep transfer learning framework for hydatid cyst classification using CT images. Soft Comput. 27(11), 7179–7189 (2023) https://doi.org/10.1007/s00500-023-07945-z

Article  Google Scholar 

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis. 128, 336–359 (2020) https://doi.org/10.1007/S11263-019-01228-7

Jahmunah, V., Ng, E.Y., Tan, R.-S., Oh, S.L., Acharya, U.R.: Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals. Comput Biol Med. 146, 105550 (2022) https://doi.org/10.1016/J.COMPBIOMED.2022.105550

Tasci, B., Tasci, I.: Deep feature extraction based brain image classification model using preprocessed images: PDRNet. Biomed Signal Process Control. 78, 103948 (2022) https://doi.org/10.1016/J.BSPC.2022.103948

Yildirim, M.: Image visualization and classification using hydatid cyst images with an explainable hybrid model. Appl Sci. 13(17), 9926 (2023) https://doi.org/10.3390/app13179926

Article  CAS  Google Scholar 

Arnold, V.I., Avez, A.: Ergodic problems of classical mechanics. (No Title). (1968) https://cir.nii.ac.jp/crid/1130282273312514176

Bao, J., Yang, Q.: Period of the discrete arnold cat map and general cat map. Nonlinear Dyn. 70, 1365–1375 (2012) https://doi.org/10.1007/S11071-012-0539-3

Peterson, L.E.: K-nearest neighbor. Scholarpedia. 4(2), 1883 (2009) https://doi.org/10.4249/SCHOLARPEDIA.1883

Article  Google Scholar 

Erten, M., Tuncer, I., Barua, P.D., Yildirim, K., Dogan, S., Tuncer, T., Tan, R.-S., Fujita, H., Acharya, U.R.: Automated urine cell image classification model using chaotic mixer deep feature extraction. J Digit Imaging. 36(4), 1675–1686 (2023) https://doi.org/10.1007/S10278-023-00827-8

Article  PubMed  PubMed Central  Google Scholar 

Poyraz, A.K., Dogan, S., Akbal, E., Tuncer, T.: Automated brain disease classification using exemplar deep features. Biomed Signal Process Control. 73, https://doi.org/10.1016/j.bspc.2021.103448

Aslan, N., Koca, G.O., Kobat, M.A., Dogan, S.: Multi-classification deep CNN model for diagnosing COVID-19 using iterative neighborhood component analysis and iterative ReliefF feature selection techniques with X-ray images. Chemom Intell Lab Syst. 224, 104539 (2022) https://doi.org/10.1016/j.chemolab.2022.104539

Tegshee, T., Dorjsuren, T., Lee, S., Batjargal, D.: A study on staging cystic echinococcosis using machine learning methods. Bioengineering. 12(2), 181 (2025)

Article  PubMed  PubMed Central  Google Scholar 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems. 30 (2017)

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. (2020)

Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: A survey. ACM Comput Surv. 54(10s), 1–41 (2022) https://doi.org/10.1145/3505244

Article  Google Scholar 

Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A., Li, Y.: MaxViT: Multi-axis vision transformer. In: Avidan, S., Brostow, G., Cissè, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. Lecture Notes in Computer Science, vol. 13664, pp. 459–479. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20053-3_27

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022 (2021). https://doi.org/10.1109/ICCV48922.2021.00986

Pacal, I.: A novel swin transformer approach utilizing residual multi-layer perceptron for diagnosing brain tumors in mri images. International Journal of Machine Learning and Cybernetics. 15(9), 3579–3597 (2024) https://doi.org/10.1007/s13042-024-02110-w

Article  CAS  Google Scholar 

Zhang, C., Wang, L., Cheng, S., Li, Y.: SwinSUNet: Pure transformer network for remote sensing image change detection. IEEE Trans Geosci Remote Sens. 60, 1–13 (2022) https://doi.org/10.1109/TGRS.2022.3160007

Gong, H., Mu, T., Li, Q., Dai, H., Li, C., He, Z., Wang, W., Han, F., Tuniyazi, A., Li, H., et al.: Swin-transformer-enabled YOLOv5 with attention mechanism for small object detection on satellite images. Remote Sens. 14(12), 2861 (2022) https://doi.org/10.3390/rs14122861

Article  Google Scholar 

Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-unet: Unet-like pure transformer for medical image segmentation. In: European Conference on Computer Vision, pp. 205–218 (2022). https://doi.org/10.1007/978-3-031-25066-8_9 . Springer

Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In: International MICCAI Brainlesion Workshop, pp. 272–284 (2021). https://doi.org/10.1007/978-3-031-08999-2_22 . Springer

Goldberger, J., Hinton, G.E., Roweis, S., Salakhutdinov, R.R.: Neighbourhood components analysis. Advances in neural information processing systems. 17 (2004)

Liu, H., Cui, G., Luo, Y., Guo, Y., Zhao, L., Wang, Y., Subasi, A., Dogan, S., Tuncer, T.: Artificial intelligence-based breast cancer diagnosis using ultrasound images and grid-based deep feature generator. International Journal of General Medicine, 2271–2282 (2022) https://doi.org/10.2147/IJGM.S347491

Barua, P.D., Baygin, N., Dogan, S., Baygin, M., Arunkumar, N., Fujita, H., Tuncer, T., Tan, R.-S., Palmer, E., Azizan, M.M.B., et al.: Automated detection of pain levels using deep feature extraction from shutter blinds-based dynamic-sized horizontal patches with facial images. Sci Rep. 12(1), 17297 (2022) https://doi.org/10.1038/s41598-022-21380-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasheed, J., Shubair, R.M.: Screening lung diseases using cascaded feature generation and selection strategies. Healthcare (Basel). 10(7), 1313 (2022) https://doi.org/10.3390/healthcare10071313

Article  PubMed  PubMed Central  Google Scholar 

Kaplan, E., Ekinci, T., Kaplan, S., Barua, P.D., Dogan, S., Tuncer, T., Tan, R.-S., Arunkumar, N., Acharya, U.R.: Pfp-lhcinca: Pyramidal fixed-size patch-based feature extraction and chi-square iterative neighborhood component analysis for automated fetal sex classification on ultrasound images. Contrast Media & Molecular Imaging. 2022(1), 6034971 (2022) https://doi.org/10.1155/2022/6034971

Article  CAS  Google Scholar 

Tasci, B., Tasci, G., Ayyildiz, H., Kamath, A.P., Barua, P.D., Tuncer, T., Dogan, S., Ciaccio, E.J., Chakraborty, S., Acharya, U.R.: Automated schizophrenia detection model using blood sample scattergram images and local binary pattern. Multimedia Tools Appl. 83(14), 42735–42763 (2024) https://doi.org/10.1007/s11042-023-16676-0

Article  Google Scholar 

Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J Big Data. 3(1), 9 (2016) https://doi.org/10.1186/s40537-016-0043-6

Article  Google Scholar 

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27, pp. 270–279 (2018). https://doi.org/10.1007/978-3-030-01424-7_27. Springer

Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2661–2671 (2019). https://doi.org/10.48550/arXiv.1805.08974

Wang, Y., Sun, D., Chen, K., Lai, F., Chowdhury, M.: Egeria: Efficient dnn training with knowledge-guided layer freezing. In: Proceedings of the Eighteenth European Conference on Computer Systems, pp. 851–866 (2023). https://doi.org/10.1145/3552326.3587451

Yang, L., Lin, S., Zhang, F., Zhang, J., Fan, D.: Efficient self-supervised continual learning with progressive task-correlated layer freezing. In: 2025 26th International Symposium on Quality Electronic Design (ISQED), pp. 1–8 (2025). https://doi.org/10.1109/ISQED65160.2025.11014440 . IEEE

Frégier, Y., Gouray, J.-B.: Mind2mind: transfer learning for GANs. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information (GSI 2021). Lecture Notes in Computer Science, vol. 12829, pp. 851–859. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80209-7_91

Davila, A., Colan, J., Hasegawa, Y.: Comparison of fine-tuning strategies for transfer learning in medical image classification. Image Vis Comput. 146, 105012 (2024) https://doi.org/10.1016/j.imavis.2024.105012

Kim, H.E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M.E., Ganslandt, T.: Transfer learning for medical image classification: a literature review. BMC Med Imaging. 22(1), 69 (2022) https://doi.org/10.1186/s12880-022-00793-7

Article 

Comments (0)

No login
gif