Lin L, Li Z, Yan L, et al. Global, regional, and national cancer incidence and death for 29 cancer groups in 2019 and trends analysis of the global cancer burden, 1990-2019. J Hematol Oncol 2021;14(1):197. https://doi.org/10.1186/s13045-021-01213-z
Article PubMed PubMed Central Google Scholar
Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022. J Natl Cancer Cent 2024;4(1):47-53. https://doi.org/10.1016/j.jncc.2024.01.006
Article PubMed PubMed Central Google Scholar
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin 2022;72(1):7-33. https://doi.org/10.3322/caac.21708
Reif de Paula T, Haas EM, Keller DS. Colorectal cancer in the 45-to-50 age group in the United States: a National Cancer Database (NCDB) analysis. Surg Endosc 2022;36(9):6629–6637. https://doi.org/10.1007/s00464-021-08929-6
Poornakala S, Prema NS. A study of morphological prognostic factors in colorectal cancer and survival analysis. Indian J Pathol Microbiol 2019;62(1):36-42. https://doi.org/10.4103/IJPM.IJPM_91_18
Article CAS PubMed Google Scholar
Yuan H, Dong Q, Zheng B, et al. Lymphovascular invasion is a high risk factor for stage I/II colorectal cancer: a systematic review and meta-analysis. Oncotarget 2017;8(28):46565-46579. https://doi.org/10.18632/oncotarget.15425
Article PubMed PubMed Central Google Scholar
Wang Y, Shen L, Wan J, et al. Neoadjuvant chemoradiotherapy combined with immunotherapy for locally advanced rectal cancer: A new era for anal preservation. Front Immunol 2022;13:1067036. https://doi.org/10.3389/fimmu.2022.1067036
Article CAS PubMed PubMed Central Google Scholar
Zhang L, Deng Y, Liu S, et al. Lymphovascular invasion represents a superior prognostic and predictive pathological factor of the duration of adjuvant chemotherapy for stage III colon cancer patients. BMC Cancer 2023;23(1):3. https://doi.org/10.1186/s12885-022-10416-7
Article CAS PubMed PubMed Central Google Scholar
Benson AB, Venook AP, Adam M, et al. NCCN Guidelines(R) Insights: Rectal Cancer, Version 3.2024. J Natl Compr Canc Netw 2024;22(6):366–375. https://doi.org/10.6004/jnccn.2024.0041
Lee JH, Jang HS, Kim J-G, et al. Lymphovascular invasion is a significant prognosticator in rectal cancer patients who receive preoperative chemoradiotherapy followed by total mesorectal excision. Annals of surgical oncology 2012;19:1213-1221.
Kim S, Huh JW, Lee WY, et al. Lymphovascular invasion, perineural invasion, and tumor budding are prognostic factors for stage I colon cancer recurrence. Int J Colorectal Dis 2020;35(5):881-885. https://doi.org/10.1007/s00384-020-03548-4
Sung SY, Kim SH, Jang HS, et al. Pathologic Implications of Radial Resection Margin and Perineural Invasion to Adjuvant Chemotherapy after Preoperative Chemoradiotherapy and Surgery for Rectal Cancer: A Multi-Institutional and Case-Matched Control Study. Cancers (Basel) 2022;14(17). https://doi.org/10.3390/cancers14174112
Xu H, Zhao W, Guo W, et al. Prediction Model Combining Clinical and MR Data for Diagnosis of Lymph Node Metastasis in Patients With Rectal Cancer. J Magn Reson Imaging 2021;53(3):874-883. https://doi.org/10.1002/jmri.27369
Yang YS, Feng F, Qiu YJ, et al. High-resolution MRI-based radiomics analysis to predict lymph node metastasis and tumor deposits respectively in rectal cancer. Abdom Radiol (NY) 2021;46(3):873-884. https://doi.org/10.1007/s00261-020-02733-x
Vailati BB, Sao Juliao GP, Habr-Gama A, et al. Nonoperative Management of Rectal Cancer: The Watch and Wait Strategy. Surg Oncol Clin N Am 2022;31(2):171-182. https://doi.org/10.1016/j.soc.2021.11.003
Lee S, Surabhi VR, Kassam Z, et al. Imaging of colon and rectal cancer. Curr Probl Cancer 2023;47(2):100970. https://doi.org/10.1016/j.currproblcancer.2023.100970
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017;14(12):749-762. https://doi.org/10.1038/nrclinonc.2017.141
Zwanenburg A, Vallieres M, Abdalah MA, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020;295(2):328-338. https://doi.org/10.1148/radiol.2020191145
Hou M, Sun JH. Emerging applications of radiomics in rectal cancer: State of the art and future perspectives. World J Gastroenterol 2021;27(25):3802-3814. https://doi.org/10.3748/wjg.v27.i25.3802
Article PubMed PubMed Central Google Scholar
Chen P, Yang Z, Ning P, et al. To accurately predict lymph node metastasis in patients with mass-forming intrahepatic cholangiocarcinoma by using CT radiomics features of tumor habitat subregions. Cancer Imaging 2025;25(1):19. https://doi.org/10.1186/s40644-025-00842-8
Article PubMed PubMed Central Google Scholar
Zhang Y, Ma H, Lei P, et al. Prediction of early postoperative recurrence of hepatocellular carcinoma by habitat analysis based on different sequence of contrast-enhanced CT. Front Oncol 2024;14:1522501. https://doi.org/10.3389/fonc.2024.1522501
Wu X, Wang J, Chen C, et al. Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients. Acad Radiol 2025. https://doi.org/10.1016/j.acra.2024.12.049
Fountzilas E, Pearce T, Baysal MA, et al. Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. NPJ Digit Med 2025;8(1):75. https://doi.org/10.1038/s41746-025-01471-y
Article PubMed PubMed Central Google Scholar
Zhang YP, Zhang XY, Cheng YT, et al. Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Mil Med Res 2023;10(1):22. https://doi.org/10.1186/s40779-023-00458-8
Article PubMed PubMed Central Google Scholar
Tang X, Zhuang Z, Jiang L, et al. A Preoperative CT-based Multiparameter Deep Learning and Radiomic Model with Extracellular Volume Parameter Images Can Predict the Tumor Budding Grade in Rectal Cancer Patients. Acad Radiol 2025. https://doi.org/10.1016/j.acra.2025.02.028
Cai L, Lambregts DMJ, Beets GL, et al. Author Correction: An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study. NPJ Precis Oncol 2025;9(1):45. https://doi.org/10.1038/s41698-025-00827-7
Article PubMed PubMed Central Google Scholar
Ferreira Silverio N, van den Wollenberg W, Betgen A, et al. Incorporating patient-specific prior clinical knowledge to improve clinical target volume auto-segmentation generalisability for online adaptive radiotherapy of rectal cancer: A multicenter validation. Radiother Oncol 2025;203:110667. https://doi.org/10.1016/j.radonc.2024.110667
Jiang X, Zhao H, Saldanha OL, et al. An MRI Deep Learning Model Predicts Outcome in Rectal Cancer. Radiology 2023;307(5):e222223. https://doi.org/10.1148/radiol.222223
Zhong JW, Yang SX, Chen RP, et al. Prognostic Value of Lymphovascular Invasion in Patients with Stage III Colorectal Cancer: A Retrospective Study. Med Sci Monit 2019;25:6043-6050. https://doi.org/10.12659/MSM.918133
Article CAS PubMed PubMed Central Google Scholar
Ning X, Yang D, Ao W, et al. A novel MRI-based radiomics for preoperative prediction of lymphovascular invasion in rectal cancer. Abdom Radiol (NY) 2025. https://doi.org/10.1007/s00261-025-04800-7
Wang X, Xu C, Grzegorzek M, et al. Habitat radiomics analysis of pet/ct imaging in high-grade serous ovarian cancer: Application to Ki-67 status and progression-free survival. Front Physiol 2022;13:948767. https://doi.org/10.3389/fphys.2022.948767
Article PubMed PubMed Central Google Scholar
Qi M, Zhou W, Yuan Y, et al. Computed tomography radiomics reveals prognostic value of immunophenotyping in laryngeal squamous cell carcinoma: a comparison of whole tumor- versus habitats-based approaches. BMC Med Imaging 2024;24(1):304. https://doi.org/10.1186/s12880-024-01491-2
Comments (0)