S. Hadjikoutis, “Abnormal patterns of breathing during swallowing in neurological disorders,” Brain, vol. 123, no. 9, pp. 1863–1873, Sep. 2000, doi: https://doi.org/10.1093/brain/123.9.1863.
K. Matsuo and J. B. Palmer, “Coordination of mastication, swallowing and breathing,” Jpn. Dent. Sci. Rev., vol. 45, no. 1, pp. 31–40, May 2009, doi: https://doi.org/10.1016/j.jdsr.2009.03.004
Cichero, JULIE A Y and Murdoch, Bruce E., Dysphagia: Foundation, Theory and Practice, 1st ed. Wiley, 2006. [Online]. Available: https://www.ibmmyositis.com/CICHERODYSPHAGIA978-1-86156-505-1.pdf
S. M. Colevas, L. N. Stalter, C. A. Jones, and T. M. McCulloch, “The Natural Swallow: Factors Affecting Subject Choice of Bolus Volume and Pharyngeal Swallow Parameters in a Self-selected Swallow,” Dysphagia, vol. 37, no. 5, pp. 1172–1182, Oct. 2022, doi: https://doi.org/10.1007/s00455-021-10373-6
C. M. Steele, M. Peladeau-Pigeon, A. Nagy, and A. A. Waito, “Measurement of Pharyngeal Residue From Lateral View Videofluoroscopic Images,” J. Speech Lang. Hear. Res., vol. 63, no. 5, pp. 1404–1415, May 2020, doi: https://doi.org/10.1044/2020_JSLHR-19-00314
R. W. Mulheren et al., “The Association of 3-D Volume and 2-D Area of Post-swallow Pharyngeal Residue on CT Imaging,” Dysphagia, vol. 34, no. 5, pp. 665–672, Oct. 2019, doi: https://doi.org/10.1007/s00455-018-09968-3
K. W. Altman, G.-P. Yu, and S. D. Schaefer, “Consequence of Dysphagia in the Hospitalized Patient: Impact on Prognosis and Hospital Resources,” Arch. Otolaryngol. Neck Surg., vol. 136, no. 8, p. 784, Aug. 2010, doi: https://doi.org/10.1001/archoto.2010.129
M. Aslam and M. F. Vaezi, “Dysphagia in the elderly,” Gastroenterol. Hepatol., vol. 9, no. 12, pp. 784–795, Dec. 2013.
H. Caliskan, A. S. Mahoney, J. L. Coyle, and E. Sejdic, “Automated Bolus Detection in Videofluoroscopic Images of Swallowing Using Mask-RCNN,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada: IEEE, Jul. 2020, pp. 2173–2177. doi: https://doi.org/10.1109/EMBC44109.2020.9176664.
K.-C. Wei et al., “Swallowing kinematic analysis might be helpful in predicting aspiration and pyriform sinus stasis,” Sci. Rep., vol. 12, no. 1, p. 1354, Jan. 2022, doi: https://doi.org/10.1038/s41598-022-05441-2
A. Bandini, S. Smaoui, and C. M. Steele, “Automated pharyngeal phase detection and bolus localization in videofluoroscopic swallowing study: Killing two birds with one stone?,” May 26, 2022, arXiv: arXiv:2111.04699 . Accessed: Mar. 16, 2023. [Online]. Available: http://arxiv.org/abs/2111.04699
E. Sejdić, Y. Khalifa, A. S. Mahoney, and J. L. Coyle, “ARTIFICIAL INTELLIGENCE AND DYSPHAGIA: NOVEL SOLUTIONS TO OLD PROBLEMS,” Arq. Gastroenterol., vol. 57, no. 4, pp. 343–346, Dec. 2020, doi: https://doi.org/10.1590/s0004-2803.202000000-66
Y. Ariji et al., “A preliminary deep learning study on automatic segmentation of contrast-enhanced bolus in videofluorography of swallowing,” Sci. Rep., vol. 12, no. 1, p. 18754, Nov. 2022, doi: https://doi.org/10.1038/s41598-022-21530-8
S. K. Zhou et al., “A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises,” Proc. IEEE, vol. 109, no. 5, pp. 820–838, May 2021, doi: https://doi.org/10.1109/JPROC.2021.3054390
P. Rouzrokh et al., “Mitigating Bias in Radiology Machine Learning: 1. Data Handling,” Radiol. Artif. Intell., vol. 4, no. 5, p. e210290, Sep. 2022, doi: https://doi.org/10.1148/ryai.210290.
G. Varoquaux and V. Cheplygina, “Machine learning for medical imaging: methodological failures and recommendations for the future,” Npj Digit. Med., vol. 5, no. 1, p. 48, Apr. 2022, doi: https://doi.org/10.1038/s41746-022-00592-y
L. Wynants et al., “Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal,” BMJ, p. m1328, Apr. 2020, doi: https://doi.org/10.1136/bmj.m1328.
M. R. Hosseinzadeh Taher, F. Haghighi, R. Feng, M. B. Gotway, and J. Liang, “A Systematic Benchmarking Analysis of Transfer Learning for Medical Image Analysis,” in Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health, vol. 12968, S. Albarqouni, M. J. Cardoso, Q. Dou, K. Kamnitsas, B. Khanal, I. Rekik, N. Rieke, D. Sheet, S. Tsaftaris, D. Xu, and Z. Xu, Eds., in Lecture Notes in Computer Science, vol. 12968. , Cham: Springer International Publishing, 2021, pp. 3–13. doi: https://doi.org/10.1007/978-3-030-87722-4_1.
I. Martinović et al., “X-ray Modalities in the Era of Artificial Intelligence: Overview of Self-Supervised Learning Approach,” FACETS, 2025, https://doi.org/10.1139/facets-2024-0229
S.-C. Huang, A. Pareek, M. Jensen, M. P. Lungren, S. Yeung, and A. S. Chaudhari, “Self-supervised learning for medical image classification: a systematic review and implementation guidelines,” Npj Digit. Med., vol. 6, no. 1, p. 74, Apr. 2023, doi: https://doi.org/10.1038/s41746-023-00811-0
R. Krishnan, P. Rajpurkar, and E. J. Topol, “Self-supervised learning in medicine and healthcare,” Nat. Biomed. Eng., vol. 6, no. 12, pp. 1346–1352, Aug. 2022, doi: https://doi.org/10.1038/s41551-022-00914-1
S. Azizi et al., “Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging,” Nat. Biomed. Eng., vol. 7, no. 6, pp. 756–779, Jun. 2023, doi: https://doi.org/10.1038/s41551-023-01049-7
A. Jabri, A. Owens, and A. A. Efros, “Space-Time Correspondence as a Contrastive Random Walk,” Dec. 03, 2020, arXiv: arXiv:2006.14613. Accessed: Aug. 08, 2023. [Online]. Available: http://arxiv.org/abs/2006.14613
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” May 18, 2015, arXiv: arXiv:1505.04597. Accessed: Aug. 15, 2023. [Online]. Available: http://arxiv.org/abs/1505.04597
Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A Nested U-Net Architecture for Medical Image Segmentation,” Jul. 18, 2018, arXiv: arXiv:1807.10165. Accessed: Aug. 15, 2023. [Online]. Available: http://arxiv.org/abs/1807.10165
K. Shaga Devan, H. A. Kestler, C. Read, and P. Walther, “Weighted average ensemble-based semantic segmentation in biological electron microscopy images,” Histochem. Cell Biol., vol. 158, no. 5, pp. 447–462, Nov. 2022, https://doi.org/10.1007/s00418-022-02148-3.
F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Biom. Bull., vol. 1, no. 6, p. 80, Dec. 1945, doi: https://doi.org/10.2307/3001968
M. Krzywinski and N. Altman, “Nonparametric tests,” Nat. Methods, vol. 11, no. 5, pp. 467–468, May 2014, doi: https://doi.org/10.1038/nmeth.2937
C. M. Steele et al., “Reference Values for Healthy Swallowing Across the Range From Thin to Extremely Thick Liquids,” J. Speech Lang. Hear. Res., vol. 62, no. 5, pp. 1338–1363, May 2019, doi: https://doi.org/10.1044/2019_JSLHR-S-18-0448
W. Li, S. Mao, A. S. Mahoney, J. L. Coyle, and E. Sejdić, “Automatic Tracking of Hyoid Bone Displacement and Rotation Relative to Cervical Vertebrae in Videofluoroscopic Swallow Studies Using Deep Learning,” J. Imaging Inform. Med., vol. 37, no. 4, pp. 1922–1932, Feb. 2024, doi: https://doi.org/10.1007/s10278-024-01039-4
Z. Zhang, J. L. Coyle, and E. Sejdić, “Automatic hyoid bone detection in fluoroscopic images using deep learning,” Sci. Rep., vol. 8, no. 1, p. 12310, Dec. 2018, doi: https://doi.org/10.1038/s41598-018-30182-6
M.-Y. Hsiao et al., “Deep Learning for Automatic Hyoid Tracking in Videofluoroscopic Swallow Studies,” Dysphagia, vol. 38, no. 1, pp. 171–180, Feb. 2023, doi: https://doi.org/10.1007/s00455-022-10438-0
H.-I. Kim, Y. Kim, B. Kim, D. Y. Shin, S. J. Lee, and S.-I. Choi, “Hyoid Bone Tracking in a Videofluoroscopic Swallowing Study Using a Deep-Learning-Based Segmentation Network,” Diagnostics, vol. 11, no. 7, p. 1147, Jun. 2021, doi: https://doi.org/10.3390/diagnostics11071147
F. Messina et al., “Pharyngeal Residue Scoring in Fiberoptic Endoscopic Evaluation of Swallowing: Reliability Comparison and Applicability Among Different Scales,” Dysphagia, Feb. 2024, doi: https://doi.org/10.1007/s00455-024-10669-3
C. M. Steele, M. Peladeau-Pigeon, E. Barrett, and T. S. Wolkin, “The Risk of Penetration–Aspiration Related to Residue in the Pharynx,” Am. J. Speech Lang. Pathol., vol. 29, no. 3, pp. 1608–1617, Aug. 2020, doi: https://doi.org/10.1044/2020_AJSLP-20-00042
R. Robison et al., “Swallowing Safety and Efficiency Impairment Profiles in Individuals with Amyotrophic Lateral Sclerosis,” Dysphagia, vol. 37, no. 3, pp. 644–654, Jun. 2022, doi: https://doi.org/10.1007/s00455-021-10315-2
Comments (0)