Dayarathna S, Islam KT, Uribe S, Yang G, Hayat M, Chen Z (2024) Deep learning based synthesis of MRI, CT and PET: Review and analysis. Medical image analysis 92
Bahrami A, Karimian A, Fatemizadeh E, Arabi H, Zaidi H (2020) A new deep convolutional neural network design with efficient learning capability: Application to CT image synthesis from MRI. Medical physics 47(10):5158–5171
Wang, C., Uh, J., He, X., Hua, C. H., & Acharya, S. (2021, February). Transfer learning-based synthetic CT generation for MR-only proton therapy planning in children with pelvic sarcomas. In Medical Imaging 2021: Physics of Medical Imaging (Vol. 11595, pp. 1112–1118). SPIE.
Hebbale S, Marndi A, Manjunatha Kumar BH, Mohan BR, Achyutha PN, Pareek PK (2022) A survey on automated medical image classification using deep learning. International journal of health sciences 6(S1):7850–7865
Xiao, C., and Sun, J. (2021). Introduction to deep learning for healthcare. Springer Nature.
Irede, E. L., Aworinde, O. R., Lekan, O. K., Amienghemhen, O. D., Okonkwo, T. P., Onivefu, A. P., & Ifijen, I. H. (2024). Medical imaging: a critical review on X-ray imaging for the detection of infection. Biomedical Materials & Devices, 1–45.
Patel, P. R., & De Jesus, O. (2021). CT scan.
Reddy R, Haris M (2015) Imaging technologies from bench to bedside. Journal of Translational Medicine 13:1–3
Gotthardt M, Bleeker-Rovers CP, Boerman OC, Oyen WJ (2010) Imaging of inflammation by PET, conventional scintigraphy, and other imaging techniques. Journal of Nuclear Medicine 51(12):1937–1949
Liang HD, Blomley MJK (2003) The role of ultrasound in molecular imaging. The British journal of radiology 76(suppl_2):S140–S150
Article CAS PubMed Google Scholar
https://www.flickr.com/photos/67143060@N05/6555470097/, Accessed on 30th December 2024
https://livingwithschizophreniauk.org/cognitive-symptoms-schizophrenia/ , Accessed on 30th December 2024
https://commons.wikimedia.org/wiki/File:MRI_of_Human_Brain.jpg , Accessed on 30th December 2024
https://commons.wikimedia.org/wiki/File:PET_Normal_brain.jpg , Accessed on 30th December 2024
https://commons.wikimedia.org/wiki/File:MorisonNoText.png , Accessed on 30th December 2024
Pacal I, Karaboga D, Basturk A, Akay B, Nalbantoglu U (2020) A comprehensive review of deep learning in colon cancer. Computers in Biology and Medicine 126
Sistaninejhad B, Rasi H, Nayeri P (2023) A review paper about deep learning for medical image analysis. Computational and Mathematical Methods in Medicine 2023(1)
Li M, Jiang Y, Zhang Y, Zhu H (2023) Medical image analysis using deep learning algorithms. Frontiers in public health 11
Badawy M, Ramadan N, Hefny HA (2023) Healthcare predictive analytics using machine learning and deep learning techniques: a survey. Journal of Electrical Systems and Information Technology 10(1):40
Xiao, C., & Sun, J. (2021). Convolutional Neural Networks (CNN). In Introduction to Deep Learning for Healthcare (pp. 83-109). Cham: Springer International Publishing.
Layfield LJ, Dodd LG (1996) Fine-needle aspiration of a primary right atrial myxoma. Diagnostic cytopathology 14(2):162–164
Article CAS PubMed Google Scholar
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60–88.
Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions: Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378.
Younesi A, Ansari M, Fazli M, Ejlali A, Shafique M, Henkel J (2024) Corrections to “A Comprehensive Survey of Convolutions in Deep Learning: Applications, Challenges, and Future Trends.” IEEE Access 12:112180–112180
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).
Xiao, C., & Sun, J. (2021). Recurrent neural networks (rnn). In Introduction to Deep Learning for Healthcare (pp. 111-135). Cham: Springer International Publishing.
Sutskever, I., Martens, J., & Hinton, G. E. (2011). Generating text with recurrent neural networks. In Proceedings of the 28th international conference on machine learning (ICML-11) (pp. 1017–1024).
Karpathy,A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generatingimage descriptions. In Proceedings of the IEEE conference on computervision and pattern recognition (pp. 3128-3137).
Xiao, C., & Sun, J. (2021). Autoencoders (AE). In Introduction to Deep Learning for Healthcare (pp. 137-146). Cham: Springer International Publishing.
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P. A., and Bottou, L. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of machine learning research, 11(12).
Ranzato, M. A., Poultney, C., Chopra, S., & Cun, Y. (2006). Efficient learning of sparse representations with an energy-based model. Advances in neural information processing systems, 19.
Kadhim YA, Khan MU, Mishra A (2022) Deep learning-based computer-aided diagnosis (cad): Applications for medical image datasets. Sensors 22(22)
Xiao, C., Sun, J., Xiao, C., & Sun, J. (2021). Attention Models. Introduction to Deep Learning for Healthcare, 147–161.
Xiao, C., & Sun, J. (2021). Generative Models. In Introduction to Deep Learning for Healthcare (pp. 205-222). Cham: Springer International Publishing.
Pourpanah F, Lim CP, Etemad A, Wu QJ (2023) An ensemble semi-supervised adaptive resonance theory model with explanation capability for pattern classification. IEEE Transactions on Emerging Topics in Computational Intelligence 8(1):814–827
Van Engelen JE, Hoos HH (2020) A survey on semi-supervised learning. Machine learning 109(2):373–440
Traganitis PA, Giannakis GB (2020) Unsupervised ensemble classification with sequential and networked data. IEEE Transactions on Knowledge and Data Engineering 34(10):5009–5022
Garrido-Labrador JL, Serrano-Mamolar A, Maudes-Raedo J, Rodríguez JJ, García-Osorio C (2024) Ensemble methods and semi-supervised learning for information fusion: A review and future research directions. Information Fusion 107
Cho S, Ra S, Choi S, Park CS (2024) Application of transfer learning to overcome data imbalance and extrapolation for model predictive control: A real-life case. Energy and Buildings 311
Abid, M. H., Ashraf, R., Mahmood, T., & Faisal, C. N. (2023). Multi-modal medical image classification using deep residual network and genetic algorithm. Plos one, 18(6), e0287786.
Krishnan PT, Krishnadoss P, Khandelwal M, Gupta D, Nihaal A, Kumar TS (2024) Enhancing brain tumor detection in MRI with a rotation invariant Vision Transformer. Frontiers in neuroinformatics 18
Jiang X, Hu Z, Wang S, Zhang Y (2023) Deep learning for medical image-based cancer diagnosis. Cancers 15(14)
Mukhtorov D, Rakhmonova M, Muksimova S, Cho YI (2023) Endoscopic image classification based on explainable deep learning. Sensors 23(6)
Ganesh N, Jayalakshmi S, Narayanan RC, Mahdal M, Zawbaa HM, Mohamed AW (2023) Gated deep reinforcement learning with red deer optimization for medical image classification. IEEE Access 11:58982–58993
You H, Yu L, Tian S, Cai W (2023) A stereo spatial decoupling network for medical image classification. Complex & Intelligent Systems 9(5):5965–5974
Ahmad F, Khan MUG, Tahir A, Masud F (2023) Deep ensemble approach for pathogen classification in large-scale images using patch-based training and hyper-parameter optimization. BMC bioinformatics 24(1):273
Article PubMed PubMed Central Google Scholar
Reis HC, Turk V, Khoshelham K, Kaya S (2023) MediNet: transfer learning approach with MediNet medical visual database. Multimedia Tools and Applications 82(25):39211–39254
Celard P, Iglesias EL, Sorribes-Fdez JM, Romero R, Vieira AS, Borrajo L (2023) A survey on deep learning applied to medical images: from simple artificial neural networks to generative models. Neural Computing and Applications 35(3):2291–2323
Article CAS PubMed Google Scholar
Rhyou SY, Yoo JC (2021) Cascaded deep learning neural network for automated liver steatosis diagnosis using ultrasound images. Sensors 21(16)
Woźniak M, Siłka J, Wieczorek M (2023) Deep neural network correlation learning mechanism for CT brain tumor detection. Neural Computing and Applications 35(20):14611–14626
Mukhlif AA, Al-Khateeb B, Mohammed MA (2023) Incorporating a novel dual transfer learning approach for medical images. Sensors 23(2)
Krishnapriya S, Karuna Y (2023) Pre-trained deep learning models for brain MRI image classification. Frontiers in Human Neuroscience 17
Althobaiti MM, Ashour AA, Alhindi NA, Althobaiti A, Mansour RF, Gupta D, Khanna A (2022) [Retracted] Deep Transfer Learning-Based Breast Cancer Detection and Classification Model Using Photoacoustic Multimodal Images. BioMed Research International 2022(1)
Nagaraju, S., Kumar, K. V., Rani, B. P., Lydia, E. L., Ishak, M. K., Filali, I., ... & Mostafa, S. M. (2023). Automated diabetic foot ulcer detection and classification using deep learning. IEEE Access, 11, 127578–127588.
Gite S, Mishra A, Kotecha K (2023) Enhanced lung image segmentation using deep learning. Neural Computing and Applications 35(31):22839–22853
Obayya M, Saeed MK, Alruwais N, Alotaibi SS, Assiri M, Salama AS (2023) Hybrid metaheuristics with deep learning-based fusion model for biomedical image analysis. IEEE Access 11:117149–117158
Gandikota, H. P., & S, A. (2023). CT scan pancreatic cancer segmentation and classification using deep learning and the tunicate swarm algorithm. Plos one, 18(11), e0292785.
Liu K, Ning X, Liu S (2022) Medical image classification based on semi-supervised generative adversarial network and pseudo-labelling. Sensors 22(24)
Hong J, Hachem LD, Fehlings MG (2022) A deep learning model to classify neoplastic state and tissue origin from transcriptomic data. Scientific reports 12(1):9669
Article CAS PubMed PubMed Central Google Scholar
Khan E, Rehman MZU, Ahmed F, Alfouzan FA, Alzahrani NM, Ahmad J (2022) Chest X-ray classification for the detection of COVID-19 using deep learning techniques. Sensors 22(3)
Sharma A, Mishra PK (2022) Image enhancement techniques on deep learning approaches for automated diagnosis of COVID-19 features using CXR images. Multimedia Tools and Applications 81(29):42649–42690
Article PubMed PubMed Central Google Scholar
Lei T, Wang R, Zhang Y, Wan Y, Liu C, Nandi AK (2021) DefED-Net: Deformable encoder-decoder network for liver and liver tumor segmentation. IEEE Transactions on Radiation and Plasma Medical Sciences 6(1):68–78
Cejudo JE, Chaurasia A, Feldberg B, Krois J, Schwendicke F (2021) Classification of dental radiographs using deep learning. Journal of Clinical Medicine 10(7)
Magrelli, S., Valentini, P., De Rose, C., Morello, R., & Buonsenso, D. (2021). Classification of lung disease in children by using lung ultrasound images and deep convolutional neural network. Frontiers in physiology, 12, 693448.
Mansour, R. F., Alfar, N. M., Abdel‐Khalek, S., Abdelhaq, M., Saeed, R. A., & Alsaqour, R. (2022). Optimal deep learning based fusion model for biomedical image classification. Expert Systems, 39(3), e12764.
Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods 18(2):203–211
Article CAS PubMed Google Scholar
Hameed Z, Zahia S, Garcia-Zapirain B, Javier Aguirre J, Maria Vanegas A (2020) Breast cancer histopathology image classification using an ensemble of deep learning models. Sensors 20(16)
Singh,V. K., Rashwan, H. A., Romani, S., Akram, F., Pandey, N., Sarker, M. M. K., ...& Torrents-Barrena, J. (2020). Breast tumor segmentation and shapeclassification in mammograms using generative adversarial and convolutionalneural network. Expert Systems with Applications, 139,112855.
Dou Q, Liu Q, Heng PA, Glocker B (2020) Unpaired multi-modal segmentation via knowledge distillation. IEEE transactions on medical imaging 39(7):2415–2425
Sahlsten J, Jaskari J, Kivinen J, Turunen L, Jaanio E, Hietala K, Kaski K (2019) Deep learning fundus image analysis for diabetic retinopathy and macular edema grading. Scientific reports 9(1):10750
Article PubMed PubMed Central Google Scholar
Khazaee Fadafen M, Rezaee K (2023) Ensemble-based multi-tissue classification approach of colorectal cancer histology images using a novel hybrid deep learning framework. Scientific Reports 13(1):8823
Article CAS PubMed PubMed Central Google Scholar
Cao, M., Hu, C., Li, F., He, J., Li, E., Zhang, R., ... & Cheng, X. (2024). Development and validation of a deep learning model for predicting gastr
Comments (0)