Enhancing Surgical Precision: A Systematic Review of Wearable Medical Devices for Assisted Surgery

N. Datta et al., « Wearable Technology for Global Surgical Teleproctoring », J. Surg. Educ., vol. 72, no 6, p. 1290–1295, nov. 2015, doi: https://doi.org/10.1016/j.jsurg.2015.07.004.

C. Dinh-Le, R. Chuang, S. Chokshi, et D. Mann, « Wearable Health Technology and Electronic Health Record Integration: Scoping Review and Future Directions », JMIR MHealth UHealth, vol. 7, no 9, p. e12861, sept. 2019, doi: https://doi.org/10.2196/12861.

T. Haidegger, S. Speidel, D. Stoyanov, et R. Satava, « Robot-Assisted Minimally Invasive Surgery—Surgical Robotics in the Data Age », Proc. IEEE, vol. 110, p. 835–846, juill. 2022, doi: https://doi.org/10.1109/JPROC.2022.3180350.

J. H. Palep, « Robotic assisted minimally invasive surgery », J. Minimal Access Surg., vol. 5, no 1, p. 1, mars 2009, doi: https://doi.org/10.4103/0972-9941.51313.

J. A. Sánchez-Margallo, P. A. Gloor, J. L. Campos, et F. M. Sánchez-Margallo, « Measuring Workload and Performance of Surgeons Using Body Sensors of Smartwatches », in Digital Transformation of Collaboration, A. Przegalinska, F. Grippa, et P. A. Gloor, Éd., in Springer Proceedings in Complexity. Cham: Springer International Publishing, 2020, p. 67–74. doi: https://doi.org/10.1007/978-3-030-48993-9_5.

V. Lahanas, C. Loukas, N. Smailis, et E. Georgiou, « A novel augmented reality simulator for skills assessment in minimal invasive surgery », Surg. Endosc., vol. 29, no 8, p. 2224–2234, août 2015, doi: https://doi.org/10.1007/s00464-014-3930-y.

P. Castillo-Segura, C. Fernández-Panadero, C. Alario-Hoyos, P. J. Muñoz-Merino, et C. Delgado Kloos, « Objective and automated assessment of surgical technical skills with IoT systems: A systematic literature review », Artif. Intell. Med., vol. 112, p. 102007, févr. 2021, doi: https://doi.org/10.1016/j.artmed.2020.102007.

S.-L. Lee et al., « From medical images to minimally invasive intervention: Computer assistance for robotic surgery », Computerized Medical Imaging and Graphics, vol. 34, no 1, p. 33–45, janv. 2010, doi: https://doi.org/10.1016/j.compmedimag.2009.07.007.

R. T. Smith, T. J. Clarke, W. Mayer, A. Cunningham, B. Matthews, et J. E. Zucco, « Mixed Reality Interaction and Presentation Techniques for Medical Visualizations », Adv. Exp. Med. Biol., vol. 1260, p. 123–139, 2020, doi: https://doi.org/10.1007/978-3-030-47483-6_7.

Article  PubMed  Google Scholar 

A. H. Sadeghi et al., « Immersive 3D virtual reality imaging in planning minimally invasive and complex adult cardiac surgery », Eur. Heart J. - Digit. Health, vol. 1, no 1, p. 62–70, nov. 2020, doi: https://doi.org/10.1093/ehjdh/ztaa011.

V. Naresh et N. Lee, « A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors », Sensors, vol. 21, no 4, Art. no 4, janv. 2021, doi: https://doi.org/10.3390/s21041109.

A. Ayme et al., « Advancements in Minimally Invasive Surgical Techniques: A Comprehensive Review », Salud Cienc. Tecnol., vol. 3, p. 745, févr. 2024, doi: https://doi.org/10.56294/saludcyt2023745.

X. Wang, H. Yu, S. Kold, O. Rahbek, et S. Bai, « Wearable sensors for activity monitoring and motion control: A review », Biomim. Intell. Robot., vol. 3, no 1, p. 100089, mars 2023, doi: https://doi.org/10.1016/j.birob.2023.100089.

C. Amaral, M. Paiva, A. R. Rodrigues, F. Veiga, et V. Bell, « Global Regulatory Challenges for Medical Devices: Impact on Innovation and Market Access », Appl. Sci., vol. 14, no 20, Art. no 20, janv. 2024, doi: https://doi.org/10.3390/app14209304.

R. Soangra, S. R, A. E. R, S. V. R. Y, et E. B. John, « Evaluation of surgical skill using machine learning with optimal wearable sensor locations », PLoS ONE, vol. 17, no 6, p. e0267936, juin 2022, doi: https://doi.org/10.1371/journal.pone.0267936.

M. X. Morris, D. Fiocco, T. Caneva, P. Yiapanis, et D. P. Orgill, « Current and future applications of artificial intelligence in surgery: implications for clinical practice and research », Front. Surg., vol. 11, p. 1393898, mai 2024, doi: https://doi.org/10.3389/fsurg.2024.1393898.

D. Nahavandi, R. Alizadehsani, A. Khosravi, et U. Acharya, « Application of artificial intelligence in wearable devices: Opportunities and Challenges », Comput. Methods Programs Biomed., vol. 213, p. 106541, nov. 2021, doi: https://doi.org/10.1016/j.cmpb.2021.106541.

Article  PubMed  Google Scholar 

K. Colborn, G. Brat, et R. Callcut, « Predictive Analytics and Artificial Intelligence in Surgery—Opportunities and Risks », JAMA Surg., vol. 158, no 4, p. 337, avr. 2023, doi: https://doi.org/10.1001/jamasurg.2022.5444.

C. Sivakumar, V. Mone, et R. Abdumukhtor, « Addressing privacy concerns with wearable health monitoring technology », Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 14, mars 2024, doi: https://doi.org/10.1002/widm.1535.

L. Cilliers, « Wearable devices in healthcare: Privacy and information security issues », Health Inf. Manag. J. Health Inf. Manag. Assoc. Aust., vol. 49, no 2–3, p. 150–156, 2020, doi: https://doi.org/10.1177/1833358319851684.

I. Al Khatib, A. Shamayleh, et M. Ndiaye, « Healthcare and the internet of Medical Things: Applications, Trends, Key Challenges, and Proposed Resolutions », Informatics, vol. 11, no 3, Art. no 3, sept. 2024, doi: https://doi.org/10.3390/informatics11030047.

F. Alshehri et G. Muhammad, « A Comprehensive Survey of the Internet of Things (IoT) and Edge Computing in Healthcare », IEEE Access, vol. PP, p. 1–1, déc. 2020, doi: https://doi.org/10.1109/ACCESS.2020.3047960.

A. Malik, H. Lhachemi, et R. Shorten, « I-nteract: A Cyber-Physical System for Real-Time Interaction With Physical and Virtual Objects Using Mixed Reality Technologies for Additive Manufacturing », IEEE Access, vol. PP, p. 1–1, mai 2020, doi: https://doi.org/10.1109/ACCESS.2020.2997533.

M. Laspro, L. Groysman, A. Verzella, L. Kimberly, et R. Flores, « The Use of Virtual Reality in Surgical Training: Implications for Education, Patient Safety, and Global Health Equity », Surgeries, vol. 4, p. 635–646, nov. 2023, doi: https://doi.org/10.3390/surgeries4040061.

Esteva, A., et al. (2021). Deep learning-enabled medical computer vision for surgical applications. NPJ Digital Medicine, 4(1), 24. DOI: https://doi.org/10.1038/s41746-021-00410-5

Article  Google Scholar 

K. Kummerow Broman et al., « Postoperative Care Using a Secure Online Patient Portal: Changing the (Inter)Face of General Surgery », J. Am. Coll. Surg., vol. 221, no 6, p. 1057–1066, déc. 2015, doi: https://doi.org/10.1016/j.jamcollsurg.2015.08.429.

K. Hwa et S. M. Wren, « Telehealth follow-up in lieu of postoperative clinic visit for ambulatory surgery: results of a pilot program », JAMA Surg., vol. 148, no 9, p. 823–827, sept. 2013, doi: https://doi.org/10.1001/jamasurg.2013.2672.

D. W. Chen et al., « Utility of routine postoperative visit after appendectomy and cholecystectomy with evaluation of mobile technology access in an urban safety net population », J. Surg. Res., vol. 190, no 2, p. 478–483, août 2014, doi: https://doi.org/10.1016/j.jss.2014.04.028.

G. C. Vanderheiden, « Universal design and assistive technology in communication and information technologies: alternatives or complements? », Assist. Technol. Off. J. RESNA, vol. 10, no 1, p. 29–36, 1998, doi: https://doi.org/10.1080/10400435.1998.10131958.

Article  CAS  Google Scholar 

C. Free et al., « The Effectiveness of Mobile-Health Technologies to Improve Health Care Service Delivery Processes: A Systematic Review and Meta-Analysis », PLOS Med., vol. 10, no 1, p. e1001363, janv. 2013, doi: https://doi.org/10.1371/journal.pmed.1001363.

J. A. Slade Shantz et C. J. H. Veillette, « The Application of Wearable Technology in Surgery: Ensuring the Positive Impact of the Wearable Revolution on Surgical Patients », Front. Surg., vol. 1, p. 39, sept. 2014, doi: https://doi.org/10.3389/fsurg.2014.00039.

Article  PubMed  PubMed Central  Google Scholar 

C. C. Bellos, A. Papadopoulos, R. Rosso, et D. I. Fotiadis, « Identification of COPD patients’ health status using an intelligent system in the CHRONIOUS wearable platform », IEEE J. Biomed. Health Inform., vol. 18, no 3, p. 731–738, mai 2014, doi: https://doi.org/10.1109/JBHI.2013.2293172.

G. Appelboom et al., « The promise of wearable activity sensors to define patient recovery », J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas., vol. 21, no 7, p. 1089–1093, juill. 2014, doi: https://doi.org/10.1016/j.jocn.2013.12.003.

F. Sartori, M. Savi, et J. Talpini, « Tailoring mHealth Apps on Users to Support Behavior Change Interventions: Conceptual and Computational Considerations », Appl. Sci., vol. 12, no 8, Art. no 8, janv. 2022, doi: https://doi.org/10.3390/app12083782.

S. Arumugam, D. A. M. Colburn, et S. K. Sia, « Biosensors for Personal Mobile Health: A System Architecture Perspective », Adv. Mater. Technol., vol. 5, no 3, p. 1900720, 2020, doi: https://doi.org/10.1002/admt.201900720.

Article  PubMed  CAS  Google Scholar 

I. Machorro-Cano, J. O. Olmedo-Aguirre, G. Alor-Hernández, L. Rodríguez-Mazahua, L. N. Sánchez-Morales, et N. Pérez-Castro, « Cloud-Based Platforms for Health Monitoring: A Review », Informatics, vol. 11, no 1, Art. no 1, mars 2024, doi: https://doi.org/10.3390/informatics11010002.

R. Saeedi, K. Sasani, et A. H. Gebremedhin, « Collaborative Multi-Expert Active Learning for Mobile Health Monitoring: Architecture, Algorithms, and Evaluation », Sensors, vol. 20, no 7, Art. no 7, janv. 2020, doi: https://doi.org/10.3390/s20071932.

G. Crosby, C. Chin, T. Ghosh, et R. Murimi, « Wireless Body Area Networks in mHealth », 2015, p. 873–915. doi: https://doi.org/10.1007/978-3-319-12817-7_37.

X. Qi, K. Wang, D. Yue, L. Shu, Y. Liu, et H. Zhao, « Adaptive TDMA-based MAC protocol in energy harvesting wireless body area network for mobile health », in IECON 2015–41st Annual Conference of the IEEE Industrial Electronics Society, nov. 2015, p. 004175–004180. doi: https://doi.org/10.1109/IECON.2015.7392751.

K. M. Riffenburg et N. L. Spartano, « Physical activity and weight maintenance: the utility of wearable devices and mobile health technology in research and clinical settings », Curr. Opin. Endocrinol. Diabetes Obes., vol. 25, no 5, p. 310–314, oct. 2018, doi: https://doi.org/10.1097/MED.0000000000000433.

A. E. B. Tomaz, J. C. D. Nascimento, A. S. Hafid, et J. N. De Souza, « Preserving Privacy in Mobile Health Systems Using Non-Interactive Zero-Knowledge Proof and Blockchain », IEEE Access, vol. 8, p. 204441–204458, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3036811.

Article  Google Scholar 

P. N. Ramkumar, G. F. Muschler, K. P. Spindler, J. D. Harris, P. C. McCulloch, et M. A. Mont, « Open mHealth Architecture: A Primer for Tomorrow’s Orthopedic Surgeon and Introduction to Its Use in Lower Extremity Arthroplasty », J. Arthroplasty, vol. 32, no 4, p. 1058–1062, avr. 2017, doi: https://doi.org/10.1016/j.arth.2016.11.019.

N. Varga, E. Piri, et L. Bokor, « Network-assisted Smart Access Point Selection for Pervasive Real-time mHealth Applications », Procedia Comput. Sci., vol. 63, p. 317–324, janv. 2015, doi: https://doi.org/10.1016/j.procs.2015.08.349.

P. N. Ramkumar et al., « Mobile technology and telemedicine for shoulder range of motion: validation of a motion-based machine-learning software development kit », J. Shoulder Elbow Surg., vol. 27, no 7, p. 1198–1204, juill. 2018, doi: https://doi.org/10.1016/j.jse.2018.01.013.

Hwang, J., & Christensen, C. M. (2008). Disruptive innovation in health care delivery: A framework for business-model innovation. Health Affairs, 27(5), 1329–1335. DOI: https://doi.org/10.1377/hlthaff.27.5.1329.

Article  PubMed  Google Scholar 

H. Elhadj, J. Elias, L. Fourati, et L. Kamoun, « A Priority based Cross Layer Routing Protocol for healthcare applications », Ad Hoc Netw., vol. 42, nov. 2015, doi: https://doi.org/10.1016/j.adhoc.2015.10.007.

A. E. B. Tomaz, J. C. D. Nascimento, A. S. Hafid, et J. N. De Souza, « Preserving Privacy in Mobile Health Systems Using Non-Interactive Zero-Knowledge Proof and Blockchain », IEEE Access, vol. 8, p. 204441–204458, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3036811.

Article  Google Scholar 

C. C. Y. Poon, Y.-T. Zhang, et S.-D. Bao, « A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health », IEEE Commun. Mag., vol. 44, no 4, p. 73–81, avr. 2006, doi: https://doi.org/10.1109/MCOM.2006.1632652.

R. Istepanian, S. Laxminarayan, et C. S. Pattichis, M-Health: Emerging Mobile Health Systems. Springer Science & Business Media, 2007.

R. S. H. Istepanian et T. AlAnzi, « Chapter Twenty Two - Mobile health (m-health): Evidence-based progress or scientific retrogression », in Biomedical Information Technology (Second Edition), D. D. Feng, Éd., in Biomedical Engineering., Academic Press, 2020, p. 717–733. doi: https://doi.org/10.1016/B978-0-12-816034-3.00022-5.

C. R. Bruce et al., « Assessing the Impact of Patient-Facing Mobile Health Technology on Patient Outcomes: Retrospective Observational Cohort Study », JMIR MHealth UHealth, vol. 8, no 6, p. e19333, juin 2020, doi: https://doi.org/10.2196/19333.

C. Ewbank, R. S. Groen, A. L. Kushner, et S. Gupta, « WhatsApp: An essential m-health tool for global surgeons », Surgery, vol. 161, no 6, p. 1745–1746, juin 2017, doi: https://doi.org/10.1016/j.surg.2017.01.003.

N. Panda et al., « Perceptions of Mobile Health Technology in Elective Surgery: A Qualitative Study of North American Surgeons. », Ann. Surg., sept. 2021, doi: https://doi.org/10.1097/sla.0000000000005208.

Article  PubMed  Google Scholar 

M.-R. C, C. Mt, et L. Rs, « Mobile phone-based telemedicine system for the home follow-up of patients undergoing ambulatory surgery », Telemed. J. E-Health Off. J. Am. Telemed. Assoc., vol. 15, no 6, août 2009, doi: https://doi.org/10.1089/tmj.2009.0003.

D. W. Wilmore et H. Kehlet, « Management of patients in fast track surgery », BMJ, vol. 322, no 7284, p. 473–476, févr. 2001, doi: https://doi.org/10.1136/bmj.322.7284.473.

G. Mezei et F. Chung, « Return hospital visits and hospital readmissions after ambulatory surgery », Ann. Surg., vol. 230, no 5, p. 721–727, nov. 1999, doi: https://doi.org/10.1097/00000658-199911000-00016.

J. Bruce, E. M. Russell, J. Mollison, et Z. H. Krukowski, « The measurement and monitoring of surgical adverse events », Health Technol. Assess. Winch. Engl., vol. 5, no 22, p. 1–194, 2001, doi: https://doi.org/10.3310/hta5220.

P. S. Myles, B. Weitkamp, K. Jones, J. Melick, et S. Hensen, « Validity and reliability of a postoperative quality of recovery score: the QoR-40 », Br. J. Anaesth., vol. 84, no 1, p. 11–15, janv. 2000, doi: https://doi.org/10.1093/oxfordjournals.bja.a013366.

P. S. Myles et al., « Development and psychometric testing of a quality of recovery score after general anesthesia and surgery in adults », Anesth. Analg., vol. 88, no 1, p. 83–90, janv. 1999, doi: https://doi.org/10.1097/00000539-199901000-00016.

S. Gonzalez, J. Yuen, T. Osborn, et M. Abu-Rmaileh, « Untethered and HIPAA-compliant Interactive Livestreaming of Surgery to Residents and Medical Students », Plast. Reconstr. Surg. Glob. Open, vol. 8, oct. 2020, doi: https://doi.org/10.1097/GOX.0000000000003165.

P. C. Rhee, M. M. Fischer, L. S. Rhee, H. McMillan, et A. E. Johnson, « Cost Savings and Patient Experiences of a Clinic-Based, Wide-Awake Hand Surgery Program at a Military Medical Center: A Critical Analysis of the First 100 Procedures », J. Hand Surg., vol. 42, no 3, p. e139–e147, mars 2017, doi: https://doi.org/10.1016/j.jhsa.2016.11.019.

M. A. Morid, K. Kawamoto, T. Ault, J. Dorius, et S. Abdelrahman, « Supervised Learning Methods for Predicting Healthcare Costs: Systematic Literature Review and Empirical Evaluation », AMIA. Annu. Symp. Proc., vol. 2017, p. 1312–1321, avr. 2018.

K. Shailaja, B. Seetharamulu, et M. A. Jabbar, « Machine Learning in Healthcare: A Review », in 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), mars 2018, p. 910–914. doi: https://doi.org/10.1109/ICECA.2018.8474918.

C. Yu, J. Liu, S. Nemati, et G. Yin, « Reinforcement Learning in Healthcare: A Survey », ACM Comput. Surv., vol. 55, no 1, p. 5:1–5:36, nov. 2021, doi: https://doi.org/10.1145/3477600.

Z. Liang, G. Zhang, J. X. Huang, et Q. V. Hu, « Deep learning for healthcare decision making with EMRs », in 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), nov. 2014, p. 556–559. doi: https://doi.org/10.1109/BIBM.2014.6999219.

M. Habib, Z. Wang, S. Qiu, H. Zhao, et A. S. Murthy, « Machine Learning Based Healthcare System for Investigating the Association Between Depression and Quality of Life », IEEE J. Biomed. Health Inform., vol. 26, no 5, p. 2008–2019, mai 2022, doi: https://doi.org/10.1109/JBHI.2022.3140433.

R. A. Haraty, M. Dimishkieh, et M. Masud, « An Enhanced k-Means Clustering Algorithm for Pattern Discovery in Healthcare Data », Int. J. Distrib. Sens. Netw., vol. 11, no 6, p. 615740, juin 2015, doi: https://doi.org/10.1155/2015/615740.

K. Chung et H. Jung, « Knowledge-based dynamic cluster model for healthcare management using a convolutional neural network », Inf. Technol. Manag., vol. 21, no 1, p. 41–50, mars 2020, doi: https://doi.org/10.1007/s10799-019-00304-1.

B. Zhou, G. Yang, Z. Shi, et S. Ma, « Natural Language Processing for Smart Healthcare », IEEE Rev. Biomed. Eng., p. 1–17, 2022, doi: https://doi.org/10.1109/RBME.2022.3210270.

S. Panesar, Y. Cagle, D. Chander, J. Morey, J. Fernandez-Miranda, et M. Kliot, « Artificial Intelligence and the Future of Surgical Robotics », Ann. Surg., vol. 270, no 2, p. 223–226, août 2019, doi: https://doi.org/10.1097/SLA.0000000000003262.

J. J. Rasouli et al., « Artificial Intelligence and Robotics in Spine Surgery », Glob. Spine J., vol. 11, no 4, p. 556–564, mai 2021, doi: https://doi.org/10.1177/2192568220915718.

S. S. Panesar et K. Ashkan, « Surgery in space », Br. J. Surg., vol. 105, no 10, p. 1234–1243, sept. 2018, doi: https://doi.org/10.1002/bjs.10908.

C. Harvey, R. Koubek, V. Bégat, et S. Jacob, « Usability Evaluation of a Blood Glucose Monitoring System With a Spill-Resistant Vial, Easier Strip Handling, and Connectivity to a Mobile App: Improvement of Patient Convenience and Satisfaction », J. Diabetes Sci. Technol., vol. 10, no 5, p. 1136–1141, sept. 2016, doi: https://doi.org/10.1177/1932296816658058.

G. N. Horner, S. Agboola, K. Jethwani, A. Tan-McGrory, et L. Lopez, « Designing Patient-Centered Text Messaging Interventions for Increasing Physical Activity Among Participants With Type 2 Diabetes: Qualitative Results From the Text to Move Intervention », JMIR MHealth UHealth, vol. 5, no 4, p. e54, avr. 2017, doi: https://doi.org/10.2196/mhealth.6666.

B. Ryu et al., « Impact of an Electronic Health Record-Integrated Personal Health Record on Patient Participation in Health Care: Development and Randomized Controlled Trial of MyHealthKeeper », J. Med. Internet Res., vol. 19, no 12, p. e401, déc. 2017, doi: https://doi.org/10.2196/jmir.8867.

L. Elvin-Walsh, M. Ferguson, et P. F. Collins, « Nutritional monitoring of patients postbariatric surgery: implications for smartphone applications », J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc., vol. 31, no 1, p. 141–148, févr. 2018, doi: https://doi.org/10.1111/jhn.12492.

A. Langerman et T. P. Grantcharov, « Are We Ready for Our Close-up?: Why and How We Must Embrace Video in the OR », Ann. Surg., vol. 266, no 6, p. 934–936, déc. 2017, doi: https://doi.org/10.1097/SLA.0000000000002232.

D. A. Hashimoto, G. Rosman, D. Rus, et O. R. Meireles, « Surgical Video in the Age of Big Data », Ann. Surg., vol. 268, no 6, p. e47–e48, déc. 2018, doi: https://doi.org/10.1097/SLA.0000000000002493.

G. M. Weber, K. D. Mandl, et I. S. Kohane, « Finding the missing link for big biomedical data », JAMA, vol. 311, no 24, p. 2479

Comments (0)

No login
gif