Du HQ, Dai Q, Zhang ZH, et al. Artificial intelligence-aided diagnosis and treatment in the field of optometry. Int J Ophthalmol. 2023;16(9):1406–1416. doi:https://doi.org/10.18240/ijo.2023.09.06
Article PubMed PubMed Central Google Scholar
Zhu S, Liu X, Lu Y, et al. Application and visualization study of an intelligence-assisted classification model for common eye diseases using B-mode ultrasound images. Front Neurosci. 2024;18:1339075. doi:https://doi.org/10.3389/fnins.2024.1339075
Article PubMed PubMed Central Google Scholar
Gong D, Li WT, Li XM, et al. Development and research status of intelligent ophthalmology in China. Int J Ophthalmol. 2024;17(12):2308–2315. doi:https://doi.org/10.18240/ijo.2024.12.20
Article PubMed PubMed Central Google Scholar
Bhattacharya P, Prasad VK, Verma A, et al. Demystifying ChatGPT: An In-depth Survey of OpenAI’s Robust Large Language Models. Arch Computat Methods Eng. 2024;31(8):4557–4600. doi:https://doi.org/10.1007/s11831-024-10115-5
Chotcomwongse P, Ruamviboonsuk P, Grzybowski A. Utilizing Large Language Models in Ophthalmology: The Current Landscape and Challenges. Ophthalmol Ther. 2024;13(10):2543–2558. doi:https://doi.org/10.1007/s40123-024-01018-6
Article PubMed PubMed Central Google Scholar
Benichou L, ChatGPT. The role of using ChatGPT AI in writing medical scientific articles. J Stomatol Oral Maxillofac Surg. 2023;124(5):101456. doi:https://doi.org/10.1016/j.jormas.2023.101456
Article CAS PubMed Google Scholar
Kung TH, Cheatham M, Medenilla A, et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digit Health. 2023;2(2):e0000198. doi:https://doi.org/10.1371/journal.pdig.0000198
Article PubMed PubMed Central Google Scholar
Cappellani F, Card KR, Shields CL, Pulido JS, Haller JA. Reliability and accuracy of artificial intelligence ChatGPT in providing information on ophthalmic diseases and management to patients. Eye (Lond). 2024;38(7):1368–1373. doi:https://doi.org/10.1038/s41433-023-02906-0
Chan KS, Zary N. Applications and Challenges of Implementing Artificial Intelligence in Medical Education: Integrative Review. JMIR Med Educ. 2019;5(1):e13930. doi:https://doi.org/10.2196/13930
Article PubMed PubMed Central Google Scholar
F GG, S GA, L GA, et al. Evaluating the Efficacy of ChatGPT in Navigating the Spanish Medical Residency Entrance Examination (MIR): Promising Horizons for AI in Clinical Medicine. Clinics and practice. 2023;13(6). doi:https://doi.org/10.3390/clinpract13060130
Sandmann S, Riepenhausen S, Plagwitz L, Varghese J. Systematic analysis of ChatGPT, Google search and Llama 2 for clinical decision support tasks. Nat Commun. 2024;15(1):2050. doi:https://doi.org/10.1038/s41467-024-46411-8
Article CAS PubMed PubMed Central Google Scholar
Betzler BK, Chen H, Cheng CY, et al. Large language models and their impact in ophthalmology. Lancet Digit Health. 2023;5(12):e917-e924. doi:https://doi.org/10.1016/S2589-7500(23)00201-7
Article PubMed PubMed Central Google Scholar
Joseph G, Bhatti N, Mittal R, Bhatti A. Current Application and Future Prospects of Artificial Intelligence in Healthcare and Medical Education: A Review of Literature. Cureus. 2025;17(1):e77313. doi:https://doi.org/10.7759/cureus.77313
Article PubMed PubMed Central Google Scholar
Narayanan S, Ramakrishnan R, Durairaj E, Das A. Artificial Intelligence Revolutionizing the Field of Medical Education. Cureus. 15(11):e49604. doi:https://doi.org/10.7759/cureus.49604
Ghorashi N, Ismail A, Ghosh P, Sidawy A, Javan R. AI-Powered Chatbots in Medical Education: Potential Applications and Implications. Cureus. 15(8):e43271. doi:https://doi.org/10.7759/cureus.43271
Tan TF, Quek C, Wong J, Ting DSW. A look at the emerging trends of large language models in ophthalmology. Curr Opin Ophthalmol. 2025;36(1):83–89. doi:https://doi.org/10.1097/ICU.0000000000001097
Sevgi M, Antaki F, Keane PA. Medical education with large language models in ophthalmology: custom instructions and enhanced retrieval capabilities. Br J Ophthalmol. 2024;108(10):1354–1361. doi:https://doi.org/10.1136/bjo-2023-325046
Zong H, Wu R, Cha J, et al. Large Language Models in Worldwide Medical Exams: Platform Development and Comprehensive Analysis. J Med Internet Res. 2024;26:e66114. doi:https://doi.org/10.2196/66114
Article PubMed PubMed Central Google Scholar
Wu JH, Nishida T, Liu TYA. Accuracy of large language models in answering ophthalmology board-style questions: A meta-analysis. Asia-Pacific Journal of Ophthalmology. 2024;13(5):100106. doi:https://doi.org/10.1016/j.apjo.2024.100106
Agnihotri AP, Nagel ID, Artiaga JCM, Guevarra MCB, Sosuan GMN, Kalaw FGP. Large Language Models in Ophthalmology: A Review of Publications from Top Ophthalmology Journals. Ophthalmol Sci. 2025;5(3):100681. doi:https://doi.org/10.1016/j.xops.2024.100681
Sensoy E, Citirik M. Assessing the Competence of Artificial Intelligence Programs in Pediatric Ophthalmology and Strabismus and Comparing their Relative Advantages. Rom J Ophthalmol. 2023;67(4):389–393. doi:https://doi.org/10.22336/rjo.2023.61
Sensoy E, Citirik M. A comparative study on the knowledge levels of artificial intelligence programs in diagnosing ophthalmic pathologies and intraocular tumors evaluated their superiority and potential utility. Int Ophthalmol. 2023;43(12):4905–4909. doi:https://doi.org/10.1007/s10792-023-02893-x
Ling Q, Xu ZS, Zeng YM, et al. Assessing the possibility of using large language models in ocular surface diseases. Int J Ophthalmol. 2025;18(1):1–8. doi:https://doi.org/10.18240/ijo.2025.01.01
Article PubMed PubMed Central Google Scholar
McInnes MDF, Moher D, Thombs BD, et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA. 2018;319(4):388–396. doi:https://doi.org/10.1001/jama.2017.19163
Whiting PF, Rutjes AWS, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–536. doi:https://doi.org/10.7326/0003-4819-155-8-201110180-00009
Wei Q, Yao Z, Cui Y, Wei B, Jin Z, Xu X. Evaluation of ChatGPT-generated medical responses: A systematic review and meta-analysis. J Biomed Inform. 2024;151:104620. doi:https://doi.org/10.1016/j.jbi.2024.104620
Cai LZ, Shaheen A, Jin A, et al. Performance of Generative Large Language Models on Ophthalmology Board-Style Questions. Am J Ophthalmol. 2023;254:141–149. doi:https://doi.org/10.1016/j.ajo.2023.05.024
Lin JC, Younessi DN, Kurapati SS, Tang OY, Scott IU. Comparison of GPT-3.5, GPT-4, and human user performance on a practice ophthalmology written examination. Eye (Lond). 2023;37(17):3694–3695. doi:https://doi.org/10.1038/s41433-023-02564-2
Mihalache A, Huang RS, Popovic MM, Muni RH. Performance of an Upgraded Artificial Intelligence Chatbot for Ophthalmic Knowledge Assessment. JAMA Ophthalmol. 2023;141(8):798–800. doi:https://doi.org/10.1001/jamaophthalmol.2023.2754
Article PubMed PubMed Central Google Scholar
Mihalache A, Popovic MM, Muni RH. Performance of an Artificial Intelligence Chatbot in Ophthalmic Knowledge Assessment. JAMA Ophthalmol. 2023;141(6):589–597. doi:https://doi.org/10.1001/jamaophthalmol.2023.1144
Article PubMed PubMed Central Google Scholar
Moshirfar M, Altaf AW, Stoakes IM, Tuttle JJ, Hoopes PC. Artificial Intelligence in Ophthalmology: A Comparative Analysis of GPT-3.5, GPT-4, and Human Expertise in Answering StatPearls Questions. Cureus. 2023;15(6):e40822. doi:https://doi.org/10.7759/cureus.40822
Article PubMed PubMed Central Google Scholar
Sakai D, Maeda T, Ozaki A, Kanda GN, Kurimoto Y, Takahashi M. Performance of ChatGPT in Board Examinations for Specialists in the Japanese Ophthalmology Society. Cureus. 2023;15(12):e49903. doi:
Comments (0)