Neuroprotective effect of ripasudil on retinal ganglion cells via an antioxidative mechanism

Kiuchi Y, Inoue T, Shoji N, Nakamura M, Tanito M, Inoue K, et al. The Japan Glaucoma Society guidelines for glaucoma 5th edition. Jpn J Ophthalmol. 2023;67:189–254.

Bourne RRA, Jonas JB, Friedman D, Nangia V, Bron A, Tapply I, et al. Global estimates on the number of people blind or visually impaired by glaucoma: a meta-analysis from 2000 to 2020. Eye. 2024;38:2036–46.

Article  Google Scholar 

Fenwick EK, Man RE, Aung T, Ramulu P, Lamoureux EL. Beyond intraocular pressure: optimizing patient-reported outcomes in glaucoma. Prog Retin Eye Res. 2020;76: 100801.

Article  PubMed  Google Scholar 

Nuschke AC, Farrell SR, Levesque JM, Chauhan BC. Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: axon transport, injury and soma loss. Exp Eye Res. 2015;141:111–24.

Article  CAS  PubMed  Google Scholar 

Sit AJ, Liu JHK. Pathophysiology of glaucoma and continuous measurements of intraocular pressure. Mol Cell Biomech. 2009;6:57–69.

PubMed  Google Scholar 

Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, et al. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology. 2004;111:1641–8.

PubMed  Google Scholar 

Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13.

Article  PubMed  Google Scholar 

Emre M, Orgül S, Gugleta K, Flammer J. Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br J Ophthalmol. 2004;88:662–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gasser P, Flammer J. Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma. Am J Ophthalmol. 1991;111:585–8.

Article  CAS  PubMed  Google Scholar 

Harris A, Sergott RC, Spaeth GL, Katz JL, Shoemaker JA, Martin BJ. Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma. Am J Ophthalmol. 1994;118:642–9.

Article  CAS  PubMed  Google Scholar 

Kaiser HJ, Schoetzau A, Stümpfig D, Flammer J. Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol. 1997;123:320–7.

Article  CAS  PubMed  Google Scholar 

Schmidl D, Garhofer G, Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow: relevance for glaucoma. Exp Eye Res. 2011;93:141–55.

Article  CAS  PubMed  Google Scholar 

Himori N, Kunikata H, Shiga Y, Omodaka K, Maruyama K, Takahashi H, et al. The association between systemic oxidative stress and ocular blood flow in patients with normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2016;254:333–41.

Article  CAS  PubMed  Google Scholar 

Yilmaz N, Coban DT, Bayindir A, Erol MK, Ellidag HY, Giray O, et al. Higher serum lipids and oxidative stress in patients with normal tension glaucoma, but not pseudoexfoliative glaucoma. Bosn J Basic Med Sci. 2016;16:21–7.

CAS  PubMed  PubMed Central  Google Scholar 

Harada C, Noro T, Kimura A, Guo X, Namekata K, Nakano T, et al. Suppression of oxidative stress as potential therapeutic approach for normal tension glaucoma. Antioxidants (Basel). 2020;9:874.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimura A, Namekata K, Guo X, Noro T, Harada C, Harada T. Targeting oxidative stress for treatment of glaucoma and optic neuritis. Oxid Med Cell Longev. 2017;2017:2817252.

Article  PubMed  PubMed Central  Google Scholar 

Honjo M, Tanihara H. Impact of the clinical use of ROCK inhibitor on the pathogenesis and treatment of glaucoma. Jpn J Ophthalmol. 2018;62:109–26.

Article  CAS  PubMed  Google Scholar 

Kaneko Y, Ohta M, Inoue T, Mizuno K, Isobe T, Tanabe S, et al. Effects of K-115 (Ripasudil), a novel ROCK inhibitor, on trabecular meshwork and Schlemm’s canal endothelial cells. Sci Rep. 2016;6:19640.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isobe T, Mizuno K, Kaneko Y, Ohta M, Koide T, Tanabe S. Effects of K-115, a rho-kinase inhibitor, on aqueous humor dynamics in rabbits. Curr Eye Res. 2014;39:813–22.

Article  CAS  PubMed  Google Scholar 

Wada Y, Higashide T, Nagata A, Sugiyama K. Effects of ripasudil, a rho kinase inhibitor, on blood flow in the optic nerve head of normal rats. Graefes Arch Clin Exp Ophthalmol. 2019;257:303–11.

Article  CAS  PubMed  Google Scholar 

Effects of ripasudil hydrochloride hydrate (K-115), a Rho-kinase inhibitor, on ocular blood flow and ciliary artery smooth muscle contraction in rabbits. Jpn J Ophthalmol. 2017;61:423–32.

Okumura N, Fujii K, Kagami T, Nakahara M, Kitahara M, Kinoshita S, et al. Activation of the rho/rho kinase signaling pathway is involved in cell death of corneal endothelium. Invest Ophthalmol Vis Sci. 2016;57:6843.

Article  CAS  PubMed  Google Scholar 

Ma Z, Zhang J, Ji E, Cao G, Li G, Chu L. Rho kinase inhibition by fasudil exerts antioxidant effects in hypercholesterolemic rats. Clin Exp Pharmacol Physiol. 2011;38:68–94.

Article  CAS  Google Scholar 

Ding J, Li Q, Wang X, Sun C, Lu C, Xiao B. Fasudil protects hippocampal neurons against hypoxia-reoxygenation injury by suppressing microglial inflammatory responses in mice. J Neurochem. 2010;114:1619–29.

Article  CAS  PubMed  Google Scholar 

Yamagishi R, Aihara M, Araie M. Neuroprotective effects of prostaglandin analogues on retinal ganglion cell death independent of intraocular pressure reduction. Exp Eye Res. 2011;93:265–70.

Article  CAS  PubMed  Google Scholar 

Barres BA, Silverstein BE, Corey DP, Chun LL. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron. 1988;1:791–803.

Article  CAS  PubMed  Google Scholar 

Nakamura N, Honjo M, Yamagishi R, Kurano M, Yatomi Y, Watanabe S, et al. Neuroprotective role of sphingolipid rheostat in excitotoxic retinal ganglion cell death. Exp Eye Res. 2021;208: 108623.

Article  CAS  PubMed  Google Scholar 

Yu Z-K, Chen Y-N, Aihara M, Mao W, Uchida S, Araie M. Effects of β-adrenergic receptor antagonists on oxidative stress in purified rat retinal ganglion cells. Mol Vis. 2007;13:833–9.

CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto K, Maruyama K, Himori N, Omodaka K, Yokoyama Y, Shiga Y, et al. The novel rho kinase (Rock) inhibitor k-115: a new candidate drug for neuroprotective treatment in glaucoma. Invest Ophthalmol Vis Sci. 2014;55:7126.

Article  CAS  PubMed  Google Scholar 

Çayan S, Saylam B, Tiftik N, Ünal ND, Apa DD, Efesoy O, et al. Rho-kinase levels in testicular ischemia-reperfusion injury and effects of its inhibitor, Y-27632, on oxidative stress, spermatogenesis, and apoptosis. Urology. 2014;83:675.e13-675.e18.

Article  PubMed  Google Scholar 

Mahavadi S, Sriwai W, Manion O, Grider JR, Murthy KS. Diabetes-induced oxidative stress mediates upregulation of RhoA/Rho kinase pathway and hypercontractility of gastric smooth muscle. PLoS ONE. 2017;12: e0178574.

Article  PubMed  PubMed Central  Google Scholar 

Priviero FBM, Toque HAF, Nunes KP, Priolli DG, Teixeira CE, Webb RC. Impaired corpus cavernosum relaxation is accompanied by increased oxidative stress and up-regulation of the Rho-kinase pathway in diabetic (Db/Db) mice. PLoS ONE. 2016;11: e0156030.

Article  PubMed  PubMed Central  Google Scholar 

Gojo A, Utsunomiya K, Taniguchi K, Yokota T, Ishizawa S, Kanazawa Y, et al. The Rho-kinase inhibitor, fasudil, attenuates diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2007;568:242–7.

Article  CAS  PubMed 

Comments (0)

No login
gif