Charman WN. The eye in focus: accommodation and presbyopia. Clin Exp Optom. 2008;91:207–25.
Avetisov KS, Bakhchieva NA, Avetisov SE, Novikov IA, Frolova AA, Akovantseva AA, et al. Biomechanical properties of the lens capsule: a review. J Mech Behav Biomed Mater. 2020;103: 103600.
Article CAS PubMed Google Scholar
Knaus KR, Hipsley A, Blemker SS. A new look at an old problem: 3D modeling of accommodation reveals how age-related biomechanical changes contribute to dysfunction in presbyopia. Biomech Model Mechanobiol. 2024;23:193–205.
Richdale K, Bullimore MA, Zadnik K. Lens thickness with age and accommodation by optical coherence tomography. Ophthalmic Physiol Opt. 2008;28:441–7.
Article PubMed PubMed Central Google Scholar
Neri A, Ruggeri M, Protti A, Leaci R, Gandolfi SA, Macaluso C. Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography. J Cataract Refract Surg. 2015;41:501–10.
Article PubMed PubMed Central Google Scholar
Liu Z, Ruan X, Wang W, Liu J, Meng Y, Gu X, et al. Comparison of radius of anterior lens surface curvature measurements in vivo using the anterior segment optical coherence tomography and Scheimpflug imaging. Ann Transl Med. 2020;8:177.
Article PubMed PubMed Central Google Scholar
Du C, Shen M, Li M, Zhu D, Wang MR, Wang J. Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography. Ophthalmology. 2012;119:2479–85.
Doyle L, Little JA, Saunders KJ. Repeatability of OCT lens thickness measures with age and accommodation. Optom Vis Sci. 2013;90:1396–405.
Farouk MM, Naito T, Shinomiya K, Eguchi H, Sayed KM, Nagasawa T, et al. Optical coherence tomography reveals new insights into the accommodation mechanism. J Ophthalmol. 2015;2015: 510459.
Article PubMed PubMed Central Google Scholar
Esteve-Taboada JJ, Dominguez-Vicent A, Monsalvez-Romin D, Del Aguila-Carrasco AJ, Montes-Mico R. Non-invasive measurements of the dynamic changes in the ciliary muscle, crystalline lens morphology, and anterior chamber during accommodation with a high-resolution OCT. Graefes Arch Clin Exp Ophthalmol. 2017;255:1385–94.
Article CAS PubMed Google Scholar
Monsalvez-Romin D, Moulakaki AI, Esteve-Taboada JJ, Ferrer-Blasco T, Montes-Mico R. In vivo OCT assessment of anterior segment central axial lengths with accommodation. Arq Bras Oftalmol. 2017;80:364–8.
Gibson GA, Cruickshank FE, Wolffsohn JS, Davies LN. Optical coherence tomography reveals sigmoidal crystalline lens changes during accommodation. Vision (Basel). 2018;2:33.
Article PubMed PubMed Central Google Scholar
Shoji T, Kato N, Ishikawa S, Ibuki H, Yamada N, Kimura I, et al. In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement. BMJ Open Ophthalmol. 2017;1: e000058.
Article PubMed PubMed Central Google Scholar
Chen Z, Li T, Li M, Xu Y, Zhou X. Effect of tropicamide on crystalline lens rise in low-to-moderate myopic eyes. BMC Ophthalmol. 2020;20:327.
Article CAS PubMed PubMed Central Google Scholar
Hofstetter HW. The accommodative range through the near correction. Am J Optom Arch Am Acad Optom. 1948;25:275–85.
Article CAS PubMed Google Scholar
Huang Y, Ten W, Zhan B, Shen Y, Sun B, Xu H, et al. Autostereoscopic 3D viewing can change the dimensions of the crystalline lens in myopes. Ophthalmic Physiol Opt. 2024;44:1309–18.
Shoji T, Kato N, Ishikawa S, Ibuki H, Yamada N, Kimura I, et al. Association between axial length and in vivo human crystalline lens biometry during accommodation: a swept-source optical coherence tomography study. Jpn J Ophthalmol. 2020;64:93–101.
Article CAS PubMed Google Scholar
Namba H, Maeda N, Tsukamoto M, Utsunomiya H, Kaneko Y, Nishitsuka K, et al. Associations of ocular anterior segment structures with sex and age: the Yamagata study (Funagata). Jpn J Ophthalmol. 2024;68:751–63.
Mitsukawa T, Suzuki Y, Momota Y, Suzuki S, Yamada M. Anterior segment biometry during accommodation and effects of cycloplegics by swept-source optical coherence tomography. Clin Ophthalmol. 2020;14:1237–43.
Article CAS PubMed PubMed Central Google Scholar
Wang X, Zhu C, Hu X, Liu L, Liu M, Yuan Y, et al. Changes in dimensions and functions of crystalline lens in high myopia using CASIA2 optical coherence tomography. Ophthalmic Res. 2022;65:712–21.
Article CAS PubMed Google Scholar
Xie X, Sultan W, Corradetti G, Lee JY, Song A, Pardeshi A, et al. Assessing accommodative presbyopic biometric changes of the entire anterior segment using single swept-source OCT image acquisitions. Eye (Lond). 2022;36:119–28.
Vermeulen L, Koppen C, Van Os L, Pierscionek BK, Rozema JJ. Influence of lens thickness on the accommodative range in healthy eyes. J Optom. 2025;18: 100528.
Article PubMed PubMed Central Google Scholar
Zhao JF, Yang C, Zhou J, Zhang HY, Geng Y. Assessment of the variability and correlation of biometric measurements in eyes with cataracts. Photodiagnosis Photodyn Ther. 2025;51: 104453.
Alotaibi WM, Alqahtani KH. The effect of age on lens parameters and axial length among wide age range of Saudis: a prospective, cross-sectional study. Saudi J Ophthalmol. 2024;38:152–6.
Xiang Y, Fu T, Xu Q, Chen W, Chen Z, Guo J, et al. Quantitative analysis of internal components of the human crystalline lens during accommodation in adults. Sci Rep. 2021;11:6688.
Article CAS PubMed PubMed Central Google Scholar
Diez-Montero C, Lopez-de la Rosa A, Lopez-Miguel A, Maldonado MJ. Relationship between the main components of the crystalline lens and the anterior chamber depth after cataract formation. Graefes Arch Clin Exp Ophthalmol. 2023;261:2853–61.
Article PubMed PubMed Central Google Scholar
Lara-Lacarcel F, Marin-Franch I, Fernandez-Sanchez V, Riquelme-Nicolas R, Lopez-Gil N. Objective changes in astigmatism during accommodation. Ophthalmic Physiol Opt. 2021;41:1069–75.
Hashemi H, Khabazkhoob M, Azizi E, Iribarren R, Lanca C, Grzybowski A, et al. Longitudinal changes in crystalline lens thickness and power in children aged 6–12 years old. Eye (Lond). 2024;38:1283–9.
Article CAS PubMed Google Scholar
Ramasubramanian V, Glasser A. Prediction of accommodative optical response in prepresbyopic subjects using ultrasound biomicroscopy. J Cataract Refract Surg. 2015;41:964–80.
Article PubMed PubMed Central Google Scholar
Montes-Mico R, Nilsson M, Brautaset R, Venkataraman AP, Dominguez-Vicent A. Analysis of crystalline lens tilt and decentration using a fully automated swept-source optical coherence tomography biometer. J Refract Surg. 2025;41:e155–63.
Li X, Chang P, Li Z, Qian S, Zhu Z, Wang Q, et al. Agreement between anterior segment parameters obtained by a new ultrasound biomicroscopy and a swept-source fourier-domain anterior segment optical coherence tomography. Exp Rev Med Devices. 2020;17:1333–40.
Comments (0)