In vivo characterization of morphologic changes in the lens during accommodation as a function of age by use of OCT with swept-source technology

Charman WN. The eye in focus: accommodation and presbyopia. Clin Exp Optom. 2008;91:207–25.

Article  PubMed  Google Scholar 

Avetisov KS, Bakhchieva NA, Avetisov SE, Novikov IA, Frolova AA, Akovantseva AA, et al. Biomechanical properties of the lens capsule: a review. J Mech Behav Biomed Mater. 2020;103: 103600.

Article  CAS  PubMed  Google Scholar 

Knaus KR, Hipsley A, Blemker SS. A new look at an old problem: 3D modeling of accommodation reveals how age-related biomechanical changes contribute to dysfunction in presbyopia. Biomech Model Mechanobiol. 2024;23:193–205.

Article  PubMed  Google Scholar 

Richdale K, Bullimore MA, Zadnik K. Lens thickness with age and accommodation by optical coherence tomography. Ophthalmic Physiol Opt. 2008;28:441–7.

Article  PubMed  PubMed Central  Google Scholar 

Neri A, Ruggeri M, Protti A, Leaci R, Gandolfi SA, Macaluso C. Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography. J Cataract Refract Surg. 2015;41:501–10.

Article  PubMed  PubMed Central  Google Scholar 

Liu Z, Ruan X, Wang W, Liu J, Meng Y, Gu X, et al. Comparison of radius of anterior lens surface curvature measurements in vivo using the anterior segment optical coherence tomography and Scheimpflug imaging. Ann Transl Med. 2020;8:177.

Article  PubMed  PubMed Central  Google Scholar 

Du C, Shen M, Li M, Zhu D, Wang MR, Wang J. Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography. Ophthalmology. 2012;119:2479–85.

Article  PubMed  Google Scholar 

Doyle L, Little JA, Saunders KJ. Repeatability of OCT lens thickness measures with age and accommodation. Optom Vis Sci. 2013;90:1396–405.

Article  PubMed  Google Scholar 

Farouk MM, Naito T, Shinomiya K, Eguchi H, Sayed KM, Nagasawa T, et al. Optical coherence tomography reveals new insights into the accommodation mechanism. J Ophthalmol. 2015;2015: 510459.

Article  PubMed  PubMed Central  Google Scholar 

Esteve-Taboada JJ, Dominguez-Vicent A, Monsalvez-Romin D, Del Aguila-Carrasco AJ, Montes-Mico R. Non-invasive measurements of the dynamic changes in the ciliary muscle, crystalline lens morphology, and anterior chamber during accommodation with a high-resolution OCT. Graefes Arch Clin Exp Ophthalmol. 2017;255:1385–94.

Article  CAS  PubMed  Google Scholar 

Monsalvez-Romin D, Moulakaki AI, Esteve-Taboada JJ, Ferrer-Blasco T, Montes-Mico R. In vivo OCT assessment of anterior segment central axial lengths with accommodation. Arq Bras Oftalmol. 2017;80:364–8.

Article  PubMed  Google Scholar 

Gibson GA, Cruickshank FE, Wolffsohn JS, Davies LN. Optical coherence tomography reveals sigmoidal crystalline lens changes during accommodation. Vision (Basel). 2018;2:33.

Article  PubMed  PubMed Central  Google Scholar 

Shoji T, Kato N, Ishikawa S, Ibuki H, Yamada N, Kimura I, et al. In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement. BMJ Open Ophthalmol. 2017;1: e000058.

Article  PubMed  PubMed Central  Google Scholar 

Chen Z, Li T, Li M, Xu Y, Zhou X. Effect of tropicamide on crystalline lens rise in low-to-moderate myopic eyes. BMC Ophthalmol. 2020;20:327.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hofstetter HW. The accommodative range through the near correction. Am J Optom Arch Am Acad Optom. 1948;25:275–85.

Article  CAS  PubMed  Google Scholar 

Huang Y, Ten W, Zhan B, Shen Y, Sun B, Xu H, et al. Autostereoscopic 3D viewing can change the dimensions of the crystalline lens in myopes. Ophthalmic Physiol Opt. 2024;44:1309–18.

Article  PubMed  Google Scholar 

Shoji T, Kato N, Ishikawa S, Ibuki H, Yamada N, Kimura I, et al. Association between axial length and in vivo human crystalline lens biometry during accommodation: a swept-source optical coherence tomography study. Jpn J Ophthalmol. 2020;64:93–101.

Article  CAS  PubMed  Google Scholar 

Namba H, Maeda N, Tsukamoto M, Utsunomiya H, Kaneko Y, Nishitsuka K, et al. Associations of ocular anterior segment structures with sex and age: the Yamagata study (Funagata). Jpn J Ophthalmol. 2024;68:751–63.

Article  PubMed  Google Scholar 

Mitsukawa T, Suzuki Y, Momota Y, Suzuki S, Yamada M. Anterior segment biometry during accommodation and effects of cycloplegics by swept-source optical coherence tomography. Clin Ophthalmol. 2020;14:1237–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Zhu C, Hu X, Liu L, Liu M, Yuan Y, et al. Changes in dimensions and functions of crystalline lens in high myopia using CASIA2 optical coherence tomography. Ophthalmic Res. 2022;65:712–21.

Article  CAS  PubMed  Google Scholar 

Xie X, Sultan W, Corradetti G, Lee JY, Song A, Pardeshi A, et al. Assessing accommodative presbyopic biometric changes of the entire anterior segment using single swept-source OCT image acquisitions. Eye (Lond). 2022;36:119–28.

Article  PubMed  Google Scholar 

Vermeulen L, Koppen C, Van Os L, Pierscionek BK, Rozema JJ. Influence of lens thickness on the accommodative range in healthy eyes. J Optom. 2025;18: 100528.

Article  PubMed  PubMed Central  Google Scholar 

Zhao JF, Yang C, Zhou J, Zhang HY, Geng Y. Assessment of the variability and correlation of biometric measurements in eyes with cataracts. Photodiagnosis Photodyn Ther. 2025;51: 104453.

Article  PubMed  Google Scholar 

Alotaibi WM, Alqahtani KH. The effect of age on lens parameters and axial length among wide age range of Saudis: a prospective, cross-sectional study. Saudi J Ophthalmol. 2024;38:152–6.

Article  PubMed  Google Scholar 

Xiang Y, Fu T, Xu Q, Chen W, Chen Z, Guo J, et al. Quantitative analysis of internal components of the human crystalline lens during accommodation in adults. Sci Rep. 2021;11:6688.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diez-Montero C, Lopez-de la Rosa A, Lopez-Miguel A, Maldonado MJ. Relationship between the main components of the crystalline lens and the anterior chamber depth after cataract formation. Graefes Arch Clin Exp Ophthalmol. 2023;261:2853–61.

Article  PubMed  PubMed Central  Google Scholar 

Lara-Lacarcel F, Marin-Franch I, Fernandez-Sanchez V, Riquelme-Nicolas R, Lopez-Gil N. Objective changes in astigmatism during accommodation. Ophthalmic Physiol Opt. 2021;41:1069–75.

Article  PubMed  Google Scholar 

Hashemi H, Khabazkhoob M, Azizi E, Iribarren R, Lanca C, Grzybowski A, et al. Longitudinal changes in crystalline lens thickness and power in children aged 6–12 years old. Eye (Lond). 2024;38:1283–9.

Article  CAS  PubMed  Google Scholar 

Ramasubramanian V, Glasser A. Prediction of accommodative optical response in prepresbyopic subjects using ultrasound biomicroscopy. J Cataract Refract Surg. 2015;41:964–80.

Article  PubMed  PubMed Central  Google Scholar 

Montes-Mico R, Nilsson M, Brautaset R, Venkataraman AP, Dominguez-Vicent A. Analysis of crystalline lens tilt and decentration using a fully automated swept-source optical coherence tomography biometer. J Refract Surg. 2025;41:e155–63.

Article  PubMed  Google Scholar 

Li X, Chang P, Li Z, Qian S, Zhu Z, Wang Q, et al. Agreement between anterior segment parameters obtained by a new ultrasound biomicroscopy and a swept-source fourier-domain anterior segment optical coherence tomography. Exp Rev Med Devices. 2020;17:1333–40.

Article  CAS  Google Scholar 

Comments (0)

No login
gif