Quigley H, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7.
CAS PubMed PubMed Central Google Scholar
Sun Y, Chen A, Zou M, Zhang Y, Jin L, Li Y, et al. Time trends, associations and prevalence of blindness and vision loss due to glaucoma: an analysis of observational data from the global burden of disease study 2017. BMJ Open. 2022;12: e053805.
PubMed PubMed Central Google Scholar
Gaasterland DE, Ederer F, Beck A, Costarides A, Leef D, Closek J, et al. The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130:429–40.
Coleman AL, Caprioli J. The logic behind target intraocular pressure. Am J Ophthalmol. 2009;147:379–80.
Nakazawa T. Ocular blood flow and influencing factors for glaucoma. Asia Pac J Ophthalmol. 2016;5:38–44.
Kiyota N, Kunikata H, Takahashi S, Shiga Y, Omodaka K, Nakazawa T. Factors associated with deep circulation in the peripapillary chorioretinal atrophy zone in normal-tension glaucoma with myopic disc. Acta Ophthalmol. 2018;96:e290–7.
Shiga Y, Aizawa N, Tsuda S, Yokoyama Y, Omodaka K, Kunikata H, et al. Preperimetric Glaucoma Prospective Study (PPGPS): predicting visual field progression with basal optic nerve head blood flow in normotensive PPG eyes. Transl Vis Sci Technol. 2018;7:11.
PubMed PubMed Central Google Scholar
Fan N, Wang P, Tang L, Liu X. Ocular blood flow and normal tension glaucoma. Biomed Res Int. 2015;2015:308505.
PubMed PubMed Central Google Scholar
Lee NY, Jung Y, Han K, Park CK. Fluctuation in systolic blood pressure is a major systemic risk factor for development of primary open-angle glaucoma. Sci Rep. 2017;7:43734.
PubMed PubMed Central Google Scholar
Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, et al. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology. 2004;111:1641–8.
Wang YX, Yang H, Wei CC, Xu L, Bin WW, Jonas JB. High myopia as risk factor for the 10-year incidence of open-angle glaucoma in the Beijing Eye Study. Br J Ophthalmol. 2023;107:935–40.
Cull G, Told R, Burgoyne CF, Thompson S, Fortune B, Wang L. Compromised optic nerve blood flow and autoregulation secondary to neural degeneration. Invest Ophthalmol Vis Sci. 2015;56:7286–92.
PubMed PubMed Central Google Scholar
Kiyota N, Shiga Y, Omodaka K, Nakazawa T. The relationship between choroidal blood flow and glaucoma progression in a Japanese study population. Jpn J Ophthalmol. 2022;66:425–33.
Yamaguchi C, Kiyota N, Himori N, Omodaka K, Tsuda S, Nakazawa T. Differentiating optic neuropathies using laser speckle flowgraphy: Evaluating blood flow patterns in the optic nerve head and peripapillary choroid. Acta Ophthalmol. 2024;103: e57.
Sato K, Saigusa D, Kokubun T, Fujioka A, Feng Q, Saito R, et al. Reduced glutathione level in the aqueous humor of patients with primary open-angle glaucoma and normal-tension glaucoma. NPJ Aging. 2023;9:28.
CAS PubMed PubMed Central Google Scholar
Himori N, Kunikata H, Shiga Y, Omodaka K, Maruyama K, Takahashi H, et al. The association between systemic oxidative stress and ocular blood flow in patients with normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2016;254:333–41.
Sato K, Takada N, Fujioka A, Himori N, Yokoyama Y, Tsuda S, et al. Reduced plasma BDNF levels in normal tension glaucoma compared to open angle glaucoma. J Glaucoma. 2023;32:734–7.
PubMed PubMed Central Google Scholar
Klauke S, Sondocie C, Fine I. The impact of low vision on social function: the potential importance of lost visual social cues. J Optom. 2023;16:3–11.
Uvnäs-Moberg K, Björkstrand E, Hillegaart V, Ahlenius S. Oxytocin as a possible mediator of SSRI-induced antidepressant effects. Psychopharmacology. 1999;142:95–101.
Kresge N, Simoni RD, Hill RL. A trail of research in sulfur chemistry and metabolism: the work of Vincent du Vigneaud. J Biol Chem. 2004;279:112–5.
Yoshida M, Takayanagi Y, Inoue K, Kimura T, Young LJ, Onaka T, et al. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci. 2009;29:2259–71.
CAS PubMed PubMed Central Google Scholar
Bakermans-Kranenburg MJ, van Ijzendoorn MH. Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Soc Cogn Affect Neurosci. 2008;3:128–34.
PubMed PubMed Central Google Scholar
Neumann ID. Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol. 2008;20:858–65.
Marsh N, Marsh AA, Lee MR, Hurlemann R. Oxytocin and the neurobiology of prosocial behavior. Neuroscientist. 2021;27:604–19.
Schorscher-Petcu A, Sotocinal S, Ciura S, Dupré A, Ritchie J, Sorge RE, et al. Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse. J Neurosci. 2010;30:8274–84.
CAS PubMed PubMed Central Google Scholar
Lee HJ, Macbeth AH, Pagani JH, Scott YW. Oxytocin: the great facilitator of life. Prog Neurobiol. 2009;88:127–51.
CAS PubMed PubMed Central Google Scholar
Halbach P, Pillers DAM, York N, Asuma MP, Chiu MA, Luo W, et al. Oxytocin expression and function in the posterior retina: a novel signaling pathway. Invest Ophthalmol Vis Sci. 2015;56:751–60.
CAS PubMed PubMed Central Google Scholar
Sato R, Kunikata H, Asano T, Aizawa N, Kiyota N, Shiga Y, et al. Quantitative analysis of the macula with optical coherence tomography angiography in normal Japanese subjects: the Taiwa Study. Sci Rep. 2019;9:8875.
PubMed PubMed Central Google Scholar
Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000;107:1809–15.
Daniels N, Prinsen J, Soriano JR, Alaerts K. Oxytocin enhances the recovery of eye-contact induced autonomic arousal: a treatment mechanism study with placebo-controlled design. Eur Neuropsychopharmacol. 2020;39:87–98.
Wierzbowska J, Wierzbowski R, Stankiewicz A, Siesky B, Harris A. Cardiac autonomic dysfunction in patients with normal tension glaucoma: 24-h heart rate and blood pressure variability analysis. Br J Ophthalmol. 2012;96:624–8.
Hu J, Shi Y, Zhang J, Huang X, Wang Q, Zhao H, et al. Melanopsin retinal ganglion cells mediate light-promoted brain development. Cell. 2022;185:3124-3137.e15.
Obara EA, Hannibal J, Heegaard S, Fahrenkrug J. Loss of melanopsin-expressing retinal ganglion cells in severely staged glaucoma patients. Invest Ophthalmol Vis Sci. 2016;57:4661–7.
Ikegami K. Circadian rhythm of intraocular pressure. J physiol Sci. 2024;74:14.
CAS PubMed PubMed Central Google Scholar
Wang H, Zhang Y, Ding J, Wang N. Changes in the circadian rhythm in ptients with primary glaucoma. PLoS ONE. 2013;8: e62841.
CAS PubMed PubMed Central Google Scholar
Yoshikawa T, Obayashi K, Miyata K, Saeki K, Ogata N. Decreased melatonin secretion in patients with glaucoma: quantitative association with glaucoma severity in the LIGHT study. J Pineal Res. 2020;69: e12662.
Gubin D, Malishevskaya T, Weinert D, Zakharova E, Astakhov S, Cornelissen G. Circadian disruption in glaucoma: causes, consequences, and countermeasures. Front Biosci (Landmark Ed). 2024;29:410.
Chan EW, Chiang PPC, Liao J, Rees G, Wong TY, Lam JSH, et al. Glaucoma and associated visual acuity and field loss significantly affect glaucoma-specific psychosocial functioning. Ophthalmology. 2015;122:494–501.
Béchetoille A, Arnould B, Bron A, Baudouin C, Renard JP, Sellem E, et al. Measurement of health-related quality of life with glaucoma: validation of the Glau-QoL 36-item questionnaire. Acta Ophthalmol. 2008;86:71–80.
Yamada Y, Kiyota N, Yoshida M, Omodaka K, Nakazawa T. The relationship between Kiritsu-Meijin-derived autonomic function parameters and visual-field defects in eyes with open-angle glaucoma. Curr Eye Res. 2023;48:1006–13.
Comments (0)