Role of Ion Channels in Alzheimer’s Disease Pathophysiology

Addo-Osafo K, Choquette JM, Peters ST, Fomenko V, Xu J, Craft R, Gimlin K, Vossel K (2022) Depletion of voltage-gated potassium channel Kv1.1 contributes to behavioral deficits in transgenic mouse model of Alzheimer’s disease. Alzheimer’s Dement. https://doi.org/10.1002/alz.063361

Article  Google Scholar 

Alfaro-Ruiz R, Martín-Belmonte A, Aguado C, Hernández F, Moreno-Martínez AE, Ávila J, Luján R (2021) The expression and localisation of G-Protein-Coupled inwardly rectifying potassium (GIRK) channels is differentially altered in the hippocampus of two mouse models of Alzheimer’s disease. Int J Mol Sci 22(20):11106. https://doi.org/10.3390/ijms222011106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alfaro-Ruiz R, Martín-Belmonte A, Aguado C, Moreno-Martínez AE, Fukazawa Y, Luján R (2024) Selective disruption of synaptic NMDA receptors of the hippocampal trisynaptic circuit in Aβ pathology. Biol Res. https://doi.org/10.1186/s40659-024-00537-7

Article  PubMed  PubMed Central  Google Scholar 

Ambrad Giovannetti E, Fuhrmann M (2019) Unsupervised excitation: GABAergic dysfunctions in Alzheimer’s disease. Brain Res 1707:216–226. https://doi.org/10.1016/j.brainres.2018.11.042

Article  CAS  PubMed  Google Scholar 

Angulo E, Noé V, Casadó V, Mallol J, Gomez-Isla T, Lluis C, Ferrer I, Ciudad CJ, Franco R (2004) Up-regulation of the Kv34 potassium channel subunit in early stages of Alzheimer’s disease. J Neurochem 91(3):547–557. https://doi.org/10.1111/j.1471-4159.2004.02771.x

Article  CAS  PubMed  Google Scholar 

Aso Y, Kimura N, Matsubara E (2021) Novel serum biomarkers of neurovascular unit associated with cortical amyloid deposition. J Alzheimer’s Dis 84(2):905–914. https://doi.org/10.3233/jad-215135

Article  CAS  Google Scholar 

Babaei P (2021) NMDA and AMPA receptors dysregulation in Alzheimer’s disease. Eur J Pharmacol 908:174310. https://doi.org/10.1016/j.ejphar.2021.174310

Article  CAS  PubMed  Google Scholar 

Bachmann M, Li W, Edwards MJ, Ahmad SA, Patel S, Szabo I, Gulbins E (2020) Voltage-gated potassium channels as regulators of cell death. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.611853

Article  PubMed  PubMed Central  Google Scholar 

Bagnéris C, DeCaen PG, Naylor CE, Pryde DC, Nobeli I, Clapham DE, Wallace BA (2014) Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc Natl Acad Sci USA 111(23):8428–8433. https://doi.org/10.1073/pnas.1406855111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbieri R, Nizzari M, Zanardi I, Pusch M, Gavazzo P (2023) Voltage-gated sodium channel dysfunctions in neurological disorders. Life 13(5):1191. https://doi.org/10.3390/life13051191

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barthet G, Moreira-De-Sá A, Zhang P, Deforges S, Castanheira J, Gorlewicz A, Mulle C (2022) Presenilin and APP regulate synaptic kainate receptors. J Neurosci 42(49):9253–9262. https://doi.org/10.1523/JNEUROSCI.0297-22.2022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bender AC, Luikart BW, Lenck-Santini PP (2016) Cognitive deficits associated with Nav1.1 alterations: Involvement of neuronal firing dynamics and oscillations. PLoS ONE. https://doi.org/10.1371/journal.pone.0151538

Article  PubMed  PubMed Central  Google Scholar 

Berridge MJ (2014) Calcium regulation of neural rhythms, memory and Alzheimer’s disease. J Physiol 592(2):281–293. https://doi.org/10.1113/jphysiol.2013.257527

Article  CAS  PubMed  Google Scholar 

Black JA, Newcombe J, Waxman SG (2010) Astrocytes within multiple sclerosis lesions upregulate sodium channel Nav1.5. Brain 133(3):835–846. https://doi.org/10.1093/brain/awq003

Article  PubMed  Google Scholar 

Black JA, Newcombe J, Waxman SG (2013) Nav1.5 sodium channels in macrophages in multiple sclerosis lesions. Mult Scler J 19(5):532–542. https://doi.org/10.1177/1352458512460417

Article  CAS  Google Scholar 

Blankenship HE, Carter KA, Pham KD, Cassidy NT, Markiewicz AN, Thellmann MI, Sharpe AL, Freeman WM, Beckstead MJ (2024) VTA dopamine neurons are hyperexcitable in 3xTg-AD mice due to casein kinase 2-dependent SK channel dysfunction. Nat Commun 15(1):9673

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bobich JA, Zheng Q, Campbell A (2004) Incubation of nerve endings with a physiological concentration of Aβ 1–42 activates CaV2. 2 (N-Type)-voltage operated calcium channels and acutely increases glutamate and noradrenaline release. J Alzheimer’s Dis 6(3):243–255

Article  CAS  Google Scholar 

Boda E, Hoxha E, Pini A, Montarolo F, Tempia F (2012) Brain expression of Kv3 subunits during development, adulthood and aging and in a murine model of Alzheimer’s disease. J Mol Neurosci 46(3):606–615. https://doi.org/10.1007/s12031-011-9648-6

Article  CAS  PubMed  Google Scholar 

Booth CA, Ridler T, Murray TK, Ward MA, de Groot E, Goodfellow M, Phillips KG, Randall AD, Brown JT (2016) Electrical and network neuronal properties are preferentially disrupted in dorsal, but not ventral, medial entorhinal cortex in a mouse model of tauopathy. J Neurosci 36(2):312–324. https://doi.org/10.1523/JNEUROSCI.2845-14.2016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bordji K, Becerril-Ortega J, Nicole O, Buisson A (2010) Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-β production. J Neurosci 30(47):15927–15942. https://doi.org/10.1523/JNEUROSCI.3021-10.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bordji K, Becerril-Ortega J, Buisson A (2011) Synapses NMDA receptor activity and neuronal Aβ production in Alzheimer’s disease. Rev Neurosci. https://doi.org/10.1515/RNS.2011.029

Article  PubMed  Google Scholar 

Boscia F, Pannaccione A, Ciccone R, Casamassa A, Franco C, Piccialli I, de Rosa V, Vinciguerra A, Di Renzo G, Annunziato L (2017) The expression and activity of Kv3.4 channel subunits are precociously upregulated in astrocytes exposed to Aβ oligomers and in astrocytes of Alzheimer’s disease Tg2576 mice. Neurobiol Aging 54:187–198. https://doi.org/10.1016/j.neurobiolaging.2017.03.008

Article  CAS  PubMed  Google Scholar 

Bostancıklıoğlu M (2019) Optogenetic stimulation of serotonin nuclei retrieve the lost memory in Alzheimer’s disease. J Cell Physiol 235(2):836–847. https://doi.org/10.1002/jcp.29077

Article  CAS  PubMed  Google Scholar 

Braun AP (2012) Two-pore domain potassium channels. Channels 6(3):139–140. https://doi.org/10.4161/chan.20973

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brewer LD, Porter NM, Kerr DS, Landfield PW, Thibault O (2006) Chronic 1α,25-(OH)2vitamin D3 treatment reduces Ca2+-mediated hippocampal biomarkers of aging. Cell Calcium 40(3):277–286. https://doi.org/10.1016/j.ceca.2006.04.001

Article  CAS  PubMed  Google Scholar 

Campbell LW, Hao SY, Thibault O, Blalock EM, Landfield PW (1996) Aging changes in voltage-gated calcium currents in hippocampal CA1 neurons. J Neurosci 16(19):6286–6295

Article  CAS  PubMed  PubMed Central  Google Scholar 

Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3(8):1–23. https://doi.org/10.1101/cshperspect.a003947

Article  CAS  Google Scholar 

Chałupnik P, Szymańska E (2023) Kainate receptor antagonists: recent advances and therapeutic perspective. Int J Mol Sci 24(3):1908

Article  PubMed 

Comments (0)

No login
gif