Alam JM, Kobayashi T, Yamazaki M (2012) The single-giant unilamellar vesicle method reveals LyseninInduced pore formation in lipid membranes containing sphingomyelin. Biochemistry 51:5160–5172
Article CAS PubMed Google Scholar
Allende D, Simon SA, Mcintosh TJ (2005) Melittin-induced bilayer leakage depends on lipid material properties: Evidence for toroidal pores. Biophys J 88:1828–1837
Article CAS PubMed Google Scholar
Angelova MI, Dimitrov DS (1986) Liposome electroformation. Faraday Discuss Chem Soc 81:303–311
Banerjee KK, Maity P, Das S, Karmakar S (2023) Effect of cholesterol on the ion-membrane interaction: Zeta potential and dynamic light scattering study. Chem Phys Lipids 254:105307
Article CAS PubMed Google Scholar
Bechinger B (1997) Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol 156:197–211
Article CAS PubMed Google Scholar
Benfield AH, Henriques ST (2020) Mode-of-action of antimicrobial peptides: Membrane disruption vs intracellular mechanisms. Front Med Technol 2:610997
Article PubMed PubMed Central Google Scholar
Brender JR, McHenry AJ, Ramamoorthy A (2012) Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front Immunol 3:195
Article PubMed PubMed Central Google Scholar
Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250
Article CAS PubMed Google Scholar
Cascales JJL, Zenak S, de Torre JGL, Lezama OG, Garro A, Enriz RD (2018) Small cationic peptides: Influence of charge on their antimicrobial activity activity. ACS Omega 3:5390–5398
Chattopadhyay A, Raghuraman H (2004) Interaction of Melittin with membrane cholesterol: A fluorescence approach. Biophys J 87:2419–2432
Article PubMed PubMed Central Google Scholar
Das S, Jain R, Banerjee KK, Chattopadhyay K (2024) Cholesterol-driven modulation of membrane-membrane interactions by an antimicrobial peptide, NK-2, in phospholipid vesicles. Biochem Biophys Res Commun 741:151021
Article CAS PubMed Google Scholar
Dimova RR (2014) Developments in the field of bending rigidity measurements. Adv Colloid Interface Sci 2014(208):225–234
Epand RF, Ramamoorthy A, Epand RM (2006) Membrane lipid composition and the interaction of pardaxin: the role of cholesterol. Protein Pept Lett 13:1–5
Finegold L (1993) Cholesterol in Membrane Models. CRC Press, Boca Raton
Frédérick de Meyer F, De., Smit, B. (2009) Effect of cholesterol on the structure of a phospholipid bilayer. Proc. Natl. Acad Sci, USA 106:3654–3658
Gagat P, Ostrówka M, Duda-Madej A, Mackiewicz P (2024) Enhancing antimicrobial peptide activity through modifications of charge, hydrophobicity, and structure. Int J Mol Sci 25:10821
Article CAS PubMed PubMed Central Google Scholar
Gelhaus C, Jacobs T, Andra J, Leippe M (2008) The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic plasmodium falciparum. Antimicrob Agents Chemother 52:1713–1720
Article CAS PubMed PubMed Central Google Scholar
Halder A, Karmakar S (2022) An evidence of pores in phospholipid membrane induced by an antimicrobial peptide NK-2. Biophys Chem 282:106759
Article CAS PubMed Google Scholar
Halder A, Sannigrahi A, De N, Chattopadhyay K, Karmakar S (2020) Kinetoplastid membrane protein-11 induces pores in anionic phospholipid membranes: Effect of cholesterol. Langmuir 35:3522–3530
Hammer MU, Brauser A, Olak C, Brezesinski G, Goldmann T, Gutsmann T, Andrӓ J (2010) Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against Escherichia coli and Proteus mirabilis. Biochem J 427:477–488
Article CAS PubMed Google Scholar
Hills RD Jr, McGlinchey N (2016) Model parameters for simulation of physiological lipids. J Comput Chem 37:1112–1118
Article CAS PubMed PubMed Central Google Scholar
Hunter R (1981) Zeta Potential in Colloid Science. Academic Press, New York
Islam MZ, Jahangir Md, Alam JM, Tamba Y, Karal MAS (2014) Masahito Yamazaki, M. The single GUV method for revealing the functions of antimicrobial, pore-forming toxin, and cell-penetrating peptides or proteins. Phys Chem Chem Phys 16:15752–15767
Article CAS PubMed Google Scholar
Islam MM, Asif F, Zaman SU, Arnab MKH, Rahman MM, Hasan M (2023) Effect of charge on the antimicrobial activity of alpha-helical amphibian antimicrobial peptide. Curr Res Microb Sc 4:100182
Jackman JA, Zan GH, Zhdanov VP, Cho N-J (2013) Rupture of lipid vesicles by a broad-spectrum antiviral peptide: Influence of vesicle size. J Phys Chem B 117:16117–16128
Article CAS PubMed Google Scholar
Jacobs T, Bruhn H, Gaworski I, Fleischer B, Leippe M (2003) NK-lysin and its shortened analog NK-2 exhibit potent activities against Trypanosoma cruzi. Antimicrob Agents Chemother 47:607–613
Article CAS PubMed PubMed Central Google Scholar
Karmakar S, Maity P, Halder A (2017) Charge-driven interaction of antimicrobial peptide NK-2 with phospholipid membranes. ACS Omega 2:8859–8867
Article CAS PubMed PubMed Central Google Scholar
Karmakar S, Das S, Banerjee KK (2024) Interaction of antimicrobial peptides with model membranes: a perspective towards new antibiotics. Eur Phys J Spec Top 233:2981–2996
Karmakar, S. Particle Size Distribution and Zeta Potential Based on Dynamic Light Scattering: Techniques to Characterize Stability and Surface Charge Distribution of Charged Colloids. Recent Trends in Materials: Physics & Chemistry. : Studium Press(India)Pvt Ltd, 2019.
Klasczyk B, Knecht V (2013) Specific binding of chloride ions to lipid vesicles and implications at molecular scale. Biophys J 4:818–824
Koynarev VR, Borgos KKA, Kohlbrecher J, Porcar L (2014) Antimicrobial peptides increase line tension in raft-forming lipid membranes. J Am Chem Soc 146:20891–20903
Lee M-T, Sunc T-L (2013) Process of inducing pores in membranes by melittin. Proc Natl Acad Sci USA 110:14243–14248
Article CAS PubMed PubMed Central Google Scholar
Lee M-T, Chen F-Y, Huang HW (2004) Energetics of pore formation induced by membrane active peptides. Biochemistry 43:3590–3599
Article CAS PubMed Google Scholar
Lee M-T, Hung W-C, Chen F-W, Huang HW (2008) Mechanism and kinetics of pore formation inmembranes by water-soluble amphipathic peptides. Proc Natl Acad Sci 105:5087–5092
Article CAS PubMed PubMed Central Google Scholar
Leippe M, Andrä J (1999) Candidacidal activity of shortened synthetic analogs of amoebapores and NK-lysin. Med Microbiol Immunol 188:117–124
McHenry AJ, Sciacca MFM, Brender JR, Ramamoorthy A (2012) Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes? Biochim Biophys Acta 1818:3019–3024
Comments (0)