Cholesterol Affects the Pore Formation and the Membrane–Membrane Interaction Induced by an Antimicrobial Peptide, NK-2, in Phospholipid Vesicles

Alam JM, Kobayashi T, Yamazaki M (2012) The single-giant unilamellar vesicle method reveals LyseninInduced pore formation in lipid membranes containing sphingomyelin. Biochemistry 51:5160–5172

Article  CAS  PubMed  Google Scholar 

Allende D, Simon SA, Mcintosh TJ (2005) Melittin-induced bilayer leakage depends on lipid material properties: Evidence for toroidal pores. Biophys J 88:1828–1837

Article  CAS  PubMed  Google Scholar 

Angelova MI, Dimitrov DS (1986) Liposome electroformation. Faraday Discuss Chem Soc 81:303–311

Article  CAS  Google Scholar 

Banerjee KK, Maity P, Das S, Karmakar S (2023) Effect of cholesterol on the ion-membrane interaction: Zeta potential and dynamic light scattering study. Chem Phys Lipids 254:105307

Article  CAS  PubMed  Google Scholar 

Bechinger B (1997) Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol 156:197–211

Article  CAS  PubMed  Google Scholar 

Benfield AH, Henriques ST (2020) Mode-of-action of antimicrobial peptides: Membrane disruption vs intracellular mechanisms. Front Med Technol 2:610997

Article  PubMed  PubMed Central  Google Scholar 

Brender JR, McHenry AJ, Ramamoorthy A (2012) Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front Immunol 3:195

Article  PubMed  PubMed Central  Google Scholar 

Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

Article  CAS  PubMed  Google Scholar 

Cascales JJL, Zenak S, de Torre JGL, Lezama OG, Garro A, Enriz RD (2018) Small cationic peptides: Influence of charge on their antimicrobial activity activity. ACS Omega 3:5390–5398

Article  Google Scholar 

Chattopadhyay A, Raghuraman H (2004) Interaction of Melittin with membrane cholesterol: A fluorescence approach. Biophys J 87:2419–2432

Article  PubMed  PubMed Central  Google Scholar 

Das S, Jain R, Banerjee KK, Chattopadhyay K (2024) Cholesterol-driven modulation of membrane-membrane interactions by an antimicrobial peptide, NK-2, in phospholipid vesicles. Biochem Biophys Res Commun 741:151021

Article  CAS  PubMed  Google Scholar 

Dimova RR (2014) Developments in the field of bending rigidity measurements. Adv Colloid Interface Sci 2014(208):225–234

Article  Google Scholar 

Epand RF, Ramamoorthy A, Epand RM (2006) Membrane lipid composition and the interaction of pardaxin: the role of cholesterol. Protein Pept Lett 13:1–5

CAS  PubMed  Google Scholar 

Finegold L (1993) Cholesterol in Membrane Models. CRC Press, Boca Raton

Google Scholar 

Frédérick de Meyer F, De., Smit, B. (2009) Effect of cholesterol on the structure of a phospholipid bilayer. Proc. Natl. Acad Sci, USA 106:3654–3658

Article  Google Scholar 

Gagat P, Ostrówka M, Duda-Madej A, Mackiewicz P (2024) Enhancing antimicrobial peptide activity through modifications of charge, hydrophobicity, and structure. Int J Mol Sci 25:10821

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gelhaus C, Jacobs T, Andra J, Leippe M (2008) The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic plasmodium falciparum. Antimicrob Agents Chemother 52:1713–1720

Article  CAS  PubMed  PubMed Central  Google Scholar 

Halder A, Karmakar S (2022) An evidence of pores in phospholipid membrane induced by an antimicrobial peptide NK-2. Biophys Chem 282:106759

Article  CAS  PubMed  Google Scholar 

Halder A, Sannigrahi A, De N, Chattopadhyay K, Karmakar S (2020) Kinetoplastid membrane protein-11 induces pores in anionic phospholipid membranes: Effect of cholesterol. Langmuir 35:3522–3530

Article  Google Scholar 

Hammer MU, Brauser A, Olak C, Brezesinski G, Goldmann T, Gutsmann T, Andrӓ J (2010) Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against Escherichia coli and Proteus mirabilis. Biochem J 427:477–488

Article  CAS  PubMed  Google Scholar 

Hills RD Jr, McGlinchey N (2016) Model parameters for simulation of physiological lipids. J Comput Chem 37:1112–1118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hunter R (1981) Zeta Potential in Colloid Science. Academic Press, New York

Google Scholar 

Islam MZ, Jahangir Md, Alam JM, Tamba Y, Karal MAS (2014) Masahito Yamazaki, M. The single GUV method for revealing the functions of antimicrobial, pore-forming toxin, and cell-penetrating peptides or proteins. Phys Chem Chem Phys 16:15752–15767

Article  CAS  PubMed  Google Scholar 

Islam MM, Asif F, Zaman SU, Arnab MKH, Rahman MM, Hasan M (2023) Effect of charge on the antimicrobial activity of alpha-helical amphibian antimicrobial peptide. Curr Res Microb Sc 4:100182

CAS  Google Scholar 

Jackman JA, Zan GH, Zhdanov VP, Cho N-J (2013) Rupture of lipid vesicles by a broad-spectrum antiviral peptide: Influence of vesicle size. J Phys Chem B 117:16117–16128

Article  CAS  PubMed  Google Scholar 

Jacobs T, Bruhn H, Gaworski I, Fleischer B, Leippe M (2003) NK-lysin and its shortened analog NK-2 exhibit potent activities against Trypanosoma cruzi. Antimicrob Agents Chemother 47:607–613

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karmakar S, Maity P, Halder A (2017) Charge-driven interaction of antimicrobial peptide NK-2 with phospholipid membranes. ACS Omega 2:8859–8867

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karmakar S, Das S, Banerjee KK (2024) Interaction of antimicrobial peptides with model membranes: a perspective towards new antibiotics. Eur Phys J Spec Top 233:2981–2996

Article  CAS  Google Scholar 

Karmakar, S. Particle Size Distribution and Zeta Potential Based on Dynamic Light Scattering: Techniques to Characterize Stability and Surface Charge Distribution of Charged Colloids. Recent Trends in Materials: Physics & Chemistry. : Studium Press(India)Pvt Ltd, 2019.

Klasczyk B, Knecht V (2013) Specific binding of chloride ions to lipid vesicles and implications at molecular scale. Biophys J 4:818–824

Google Scholar 

Koynarev VR, Borgos KKA, Kohlbrecher J, Porcar L (2014) Antimicrobial peptides increase line tension in raft-forming lipid membranes. J Am Chem Soc 146:20891–20903

Article  Google Scholar 

Lee M-T, Sunc T-L (2013) Process of inducing pores in membranes by melittin. Proc Natl Acad Sci USA 110:14243–14248

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee M-T, Chen F-Y, Huang HW (2004) Energetics of pore formation induced by membrane active peptides. Biochemistry 43:3590–3599

Article  CAS  PubMed  Google Scholar 

Lee M-T, Hung W-C, Chen F-W, Huang HW (2008) Mechanism and kinetics of pore formation inmembranes by water-soluble amphipathic peptides. Proc Natl Acad Sci 105:5087–5092

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leippe M, Andrä J (1999) Candidacidal activity of shortened synthetic analogs of amoebapores and NK-lysin. Med Microbiol Immunol 188:117–124

Article  PubMed  Google Scholar 

McHenry AJ, Sciacca MFM, Brender JR, Ramamoorthy A (2012) Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes? Biochim Biophys Acta 1818:3019–3024

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif