Oxysterols Outcompete Cholesterol Binding to the Membrane-Inserted Cytolysin A Pore Complex

Abrams ME, Johnson KA, Perelman SS, Zhang L, Endapally S, Mar KB, Thompson BM, McDonald JG, Schoggins JW, Radhakrishnan A et al (2020) Oxysterols provide innate immunity to bacterial infection by mobilizing cell surface accessible cholesterol. Nature Microbiol 5(7):929–942

Article  CAS  Google Scholar 

Andrews NW, Corrotte M (2018) Plasma membrane repair. Curr Biol 28(8):392–397

Article  Google Scholar 

Asthana S, Verma A, Bhattacharya B, Nath A, Sajeev N, Maan K, Nair RR, Ayappa KG, Saini DK (2025) Oxysterols modulate protein-sterol interactions to impair CXCR4 signaling in aging cells. Biochemistry. https://doi.org/10.1021/acs.biochem.4c00617

Article  PubMed  CAS  Google Scholar 

Bielska AA, Olsen BN, Gale SE, Mydock-McGrane L, Krishnan K, Baker NA, Schlesinger PH, Covey DF, Ory DS (2014) Side-chain oxysterols modulate cholesterol accessibility through membrane remodeling. Biochemistry 53(18):3042–3051

Article  PubMed  CAS  Google Scholar 

Brown AJ, Sharpe LJ, Rogers MJ (2021) Oxysterols: From physiological tuners to pharmacological opportunities. Br J Pharmacol 178(16):3089–3103

Article  PubMed  CAS  Google Scholar 

Cyster JG, Dang EV, Reboldi A, Yi T (2014) 25-hydroxycholesterols in innate and adaptive immunity. Nature Rev Immunol 14(11):731–743

Article  CAS  Google Scholar 

Dang EV, McDonald JG, Russell DW, Cyster JG (2017) Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell 171(5):1057–1071

Article  PubMed  PubMed Central  CAS  Google Scholar 

Das A, Goldstein JL, Anderson DD, Brown MS, Radhakrishnan A (2013) Use of mutant 125I-perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells. Proc Natl Acad Sci 110(26):10580–10585

Article  PubMed  PubMed Central  CAS  Google Scholar 

Das A, Brown MS, Anderson DD, Goldstein JL, Radhakrishnan A (2014) Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. eLife 3:02882

Article  Google Scholar 

Desikan R, Maiti PK, Ayappa KG (2017) Assessing the structure and stability of transmembrane oligomeric intermediates of an \(\alpha\)-helical toxin. Langmuir 33(42):11496–11510

Article  PubMed  CAS  Google Scholar 

Desikan R, Behera A, Maiti PK, Ayappa KG (2021) Using multiscale molecular dynamics simulations to obtain insights into pore forming toxin mechanisms. Methods Enzymol 649:461–502

Article  PubMed  CAS  Google Scholar 

Endapally S, Frias D, Grzemska M, Gay A, Tomchick DR, Radhakrishnan A (2019) Molecular discrimination between two conformations of sphingomyelin in plasma membranes. Cell 176(5):1040–1053

Article  PubMed  PubMed Central  CAS  Google Scholar 

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Phys Chem 103(19):8577–8593

Article  CAS  Google Scholar 

Hess B (2008) P-LINCS: A parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4(1):116–122

Article  PubMed  CAS  Google Scholar 

Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

Article  PubMed  CAS  Google Scholar 

Hoover WG (1985) Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A 31(3):1695

Article  CAS  Google Scholar 

Jambeck JP, Lyubartsev AP (2012) An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theory Comput 8(8):2938–2948

Article  PubMed  Google Scholar 

Jambeck JP, Lyubartsev AP (2013) Another piece of the membrane puzzle: extending Slipids further. J Chem Theory Comput 9(1):774–784

Article  PubMed  Google Scholar 

Kulshreshtha A, Punnathanam S, Ayappa G (2022) Finite temperature string method with umbrella sampling using path collective variables: Application to secondary structure change in a protein. Soft Matter 18:7593

Article  Google Scholar 

Kulshrestha A, Maurya S, Gupta T, Roy R, Punnathanam S, Ayappa G (2022) Conformational flexibility is a key determinant of the lytic activity of the pore-forming protein, cytolysin A. Biophys J 121(3):325

Article  Google Scholar 

Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99sb protein force field. Proteins: Struct Funct Bioinf 78(8):1950–1958

Article  CAS  Google Scholar 

Los FC, Randis TM, Aroian RV, Ratner AJ (2013) Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 77(2):173–207

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mueller M, Grauschopf U, Maier T, Glockshuber R, Ban N (2009) The structure of a cytolytic \(\alpha\)-helical toxin pore reveals its assembly mechanism. Nature 459(7247):726–730

Article  PubMed  CAS  Google Scholar 

Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Phys Chem 81(1):511–519

Article  Google Scholar 

Olsen BN, Schlesinger PH, Baker NA (2009) Perturbations of membrane structure by cholesterol and cholesterol derivatives are determined by sterol orientation. J Am Chem Soc 131(13):4854–4865

Article  PubMed  PubMed Central  CAS  Google Scholar 

Olsen BN, Schlesinger PH, Ory DS, Baker NA (2012) Side-chain oxysterols: From cells to membranes to molecules. Biochimica et Biophysica Acta (BBA) - Biomembranes 1818(2):330–336

Article  PubMed  CAS  Google Scholar 

Ormsby TJ, Owens SE, Horlock AD, Davies D, Griffiths WJ, Wang Y, Cronin JG, Bromfield JJ, Sheldon IM (2021) Oxysterols protect bovine endometrial cells against pore-forming toxins from pathogenic bacteria. FASEB J 35(10):21889

Article  Google Scholar 

Ormsby TJ, Owens SE, Clement L, Mills TJ, Cronin JG, Bromfield JJ, Sheldon IM (2022) Oxysterols protect epithelial cells against pore-forming toxins. Front Immunol 13:815775

Article  PubMed  PubMed Central  CAS  Google Scholar 

Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 52(12):7182–7190

Article  CAS  Google Scholar 

Peraro MD, Van Der Goot FG (2016) Pore-forming toxins: ancient, but never really out of fashion. Nature Rev Microbiol 14(2):77–92

Article  CAS  Google Scholar 

Reboldi A, Dang EV, McDonald JG, Liang G, Russell DW, Cyster JG (2014) 25-hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. Science 345(6197):679–684

Article  PubMed  PubMed Central  CAS  Google Scholar 

Roderer D, Benke S, Müller M, Fäh-Rechsteiner H, Ban N, Schuler B, Glockshuber R (2014) Characterization of variants of the pore-forming toxin Clya from Escherichia coli controlled by a redox switch. Biochemistry 53(40):6357–6369

Article  PubMed  CAS  Google Scholar 

Sathyanarayana P, Maurya S, Ayappa G, Visweswariah SS, Roy R (2017) Studying binding, conformational transition and assembly of e.coli cytolysin a pore-forming toxin by single molecule fluorescence. Biophys J 112(3):524

Article  Google Scholar 

Sathyanarayana P, Maurya S, Behera A, Ravichandran M, Visweswariah SS, Ayappa KG, Roy R (2018) Cholesterol promotes cytolysin a activity by stabilizing the intermediates during pore formation. Proc Natl Acad Sci 115(31):7323–7330

Article 

Comments (0)

No login
gif