López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).
Article PubMed PubMed Central Google Scholar
Goh, J., Wong, E., Soh, J., Maier, A. B. & Kennedy, B. K. Targeting the molecular & cellular pillars of human aging with exercise. FEBS J. 290, 649–668 (2023).
Article CAS PubMed Google Scholar
Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).
Article CAS PubMed PubMed Central Google Scholar
Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).
Article CAS PubMed Google Scholar
Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).
Article CAS PubMed PubMed Central Google Scholar
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: An expanding universe. Cell 186, 243–278 (2023).
Carter, C. S. A “Gut Feeling” to create a 10th hallmark of aging. J. Gerontol. A Biol. Sci. Med Sci. 76, 1891–1894 (2021).
Article CAS PubMed PubMed Central Google Scholar
Guo, Y., Cho, S. W., Saxena, D. & Li, X. Multifaceted actions of succinate as a signaling transmitter vary with its cellular locations. Endocrinol. Metab. 35, 36–43 (2020).
Cecchini, G. Function and structure of complex II of the respiratory chain. Annu. Rev. Biochem. 72, 77–109 (2003).
Article CAS PubMed Google Scholar
Ackrell, B. A. Progress in understanding structure-function relationships in respiratory chain complex II. FEBS Lett. 466, 1–5 (2000).
Article CAS PubMed Google Scholar
Krebs, H. A. Rate control of the tricarboxylic acid cycle. Adv. Enzym. Regul. 8, 335–353 (1970).
Huang, J. & Lemire, B. D. Mutations in the C. elegans succinate dehydrogenase iron-sulfur subunit promote superoxide generation and premature aging. J. Mol. Biol. 387, 559–569 (2009).
Article CAS PubMed Google Scholar
Walker, D. W. et al. Hypersensitivity to oxygen and shortened lifespan in a Drosophila mitochondrial complex II mutant. Proc. Natl Acad. Sci. USA 103, 16382–16387 (2006).
Article CAS PubMed PubMed Central Google Scholar
Balietti, M. et al. A ketogenic diet increases succinic dehydrogenase (SDH) activity and recovers age-related decrease in numeric density of SDH-positive mitochondria in cerebellar Purkinje cells of late-adult rats. Micron 41, 143–148 (2010).
Article CAS PubMed Google Scholar
Lee, C. M., Aspnes, L. E., Chung, S. S., Weindruch, R. & Aiken, J. M. Influences of caloric restriction on age-associated skeletal muscle fiber characteristics and mitochondrial changes in rats and mice. Ann. N. Y. Acad. Sci. 854, 182–191 (1998).
Article CAS PubMed Google Scholar
Levtchenko, E. et al. Altered status of glutathione and its metabolites in cystinotic cells. Nephrol. Dial. Transplant. 20, 1828–1832 (2005).
Article CAS PubMed Google Scholar
Seidman, M. D., Bai, U., Khan, M. J. & Quirk, W. S. Mitochondrial DNA deletions associated with aging and presbyacusis. Arch. Otolaryngol.-Head. Neck Surg. 123, 1039–1045 (1997).
Article CAS PubMed Google Scholar
Orsucci, D., Filosto, M., Siciliano, G. & Mancuso, M. Electron transfer mediators and other metabolites and cofactors in the treatment of mitochondrial dysfunction. Nutr. Rev. 67, 427–438 (2009).
Abdul-Ghani, M. A. et al. Deleterious action of FA metabolites on ATP synthesis: possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 295, E678–E685 (2008).
Article CAS PubMed Google Scholar
Lange, L. G. & Sobel, B. E. Mitochondrial dysfunction induced by fatty acid ethyl esters, myocardial metabolites of ethanol. J. Clin. Investig. 72, 724–731 (1983).
Article CAS PubMed PubMed Central Google Scholar
Guo, Y. et al. Succinate and its G-protein-coupled receptor stimulates osteoclastogenesis. Nat. Commun. 8, 15621 (2017).
Article CAS PubMed PubMed Central Google Scholar
Mills, E. & O’Neill, L. A. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 24, 313–320 (2014).
Article CAS PubMed Google Scholar
Mills, E. L. et al. Succinate Dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470.e413 (2016).
Article CAS PubMed PubMed Central Google Scholar
Leite, G. et al. Age and the aging process significantly alter the small bowel microbiome. Cell Rep. 36, 109765 (2021).
Article CAS PubMed Google Scholar
Connors, J., Dawe, N. & Van Limbergen, J. The role of succinate in the regulation of intestinal inflammation. Nutrients 11, 25 (2018).
Article PubMed PubMed Central Google Scholar
Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).
Article CAS PubMed PubMed Central Google Scholar
Willis, J. R. & Gabaldón, T. The human oral microbiome in health and disease: from sequences to ecosystems. Microorganisms 8, 308 (2020).
Iwauchi, M. et al. Relationship between oral and gut microbiota in elderly people. Immun. Inflamm. Dis. 7, 229–236 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ragonnaud, E. & Biragyn, A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun. Ageing 18, 2 (2021).
Article PubMed PubMed Central Google Scholar
Said, H. S. et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 21, 15–25 (2014).
Article CAS PubMed Google Scholar
Guo, Y. et al. Targeting the succinate receptor effectively inhibits periodontitis. Cell Rep. 40, 111389 (2022).
Article CAS PubMed PubMed Central Google Scholar
Larson, P. J. et al. Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults. Nat. Aging 2, 941–955 (2022).
Comments (0)