Differences between xenotransplantation and allogeneic kidney transplantation: the current situation and future challenges in Japan

Boenink R, Astley ME, Huijben JA, et al. The ERA Registry Annual Report 2019: summary and age comparisons. Clin Kidney J. 2021;15(3):452–72.

Article  PubMed  PubMed Central  Google Scholar 

Okumi M, Kakuta Y, Unagami K, et al. Current protocols and outcomes of ABO-incompatible kidney transplantation based on a single-center experience. Transl Androl Urol. 2019;8:126–33.

Article  PubMed  PubMed Central  Google Scholar 

Tanjala S Purnell, Priscilla Auguste, Deidra C Crews, et al. Comparison of life participation activities among adults treated by hemodialysis, peritoneal dialysis, and kidney transplantation: a systematic review. Am J Kidney Dis 2013;62(5):953–73.

Kakuta Y, Okumi M, Unagami K, et al. Outcomes, complications, and economic impact of ABO-incompatible living kidney transplantation: a single- center Japanese cohort study. Clin Transplant. 2019;33: e13591.

Article  PubMed  Google Scholar 

Japan Society for Dialysis Therapy. Current status of chronic dialysis treatment in Japan (as of December 31, 2021); 2023. https://docs.jsdt.or.jp/overview/Accsessed. Written in Japanese

The Japan Society for Transplantation. Fact. Accsessed 2023; 2022. http://www.asas.or.jp/jst/pdf/factbook/factbook2022.pdf. Written in Japanese

Lentine KL, Smith JM, Miller JM, et al. OPTN/SRTR 2021 annual data report: kidney. Am J Transplant. 2023;23(2):S21–120.

Article  PubMed  PubMed Central  Google Scholar 

Ryczek N, Hryhorowicz M, Zeyland J, et al. CRISPR/Cas technology in pig-to-human xenotransplantation research. Int J Mol Sci. 2021;22(6):3196.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sykes M. Developing pig-to-human organ transplants. Science. 2022;378(6616):135–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montgomery RA, Stern JM, Lonze BE, et al. Results of two cases of pig-to-human kidney xenotransplantation. N Engl J Med. 2022;386:1889–98.

Article  CAS  PubMed  Google Scholar 

Porrett PM, Orandi BJ, Kumar V, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am J Transplant. 2022;22:1037–53.

Article  PubMed  Google Scholar 

Massachusetts General Hospital Founding Member, Mass General Brigham. World’s first genetically-edited pig kidney transplant into living recipient performed at Massachusetts General Hospital. 2024. https://www.massgeneral.org/news/press-release/worlds-first-genetically-edited-pig-kidney-transplant-into-living-recipient

Eisenson DL, Hisadome Y, Yamada K, et al. Progress in xenotransplantation: immunologic barriers, advances in gene editing, and successful tolerance induction strategies in pig-to-primate transplantation. Front Immunol. 2022;13:899657.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu TY, Xu XL, Du XG, et al. Advances in innate immunity to overcome immune rejection during xenotransplantation. Cells. 2022;11:3865.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopez KJ, Cross-Najafi AA, Farag K, et al. Strategies to induce natural killer cell tolerance in xenotransplantation. Front Immunol. 2022;13:941880.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim TJ, Kim N, Kim EO, et al. Suppression of human anti-porcine natural killer cell xenogeneic responses by combinations of monoclonal antibodies Immunology 130. Immunology. 2010;130:545–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weiss EH, Lilienfeld BG, Müller S, et al. HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation. 2009;87(1):35–43.

Article  CAS  PubMed  Google Scholar 

Ide K, Wang H, Tahara H, et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci U S A. 2007;104:5062–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daniel Eisenson Yu, Hisadome MS, et al. Consistent survival in consecutive cases of life-supporting porcine kidney xenotransplantation using 10GE source pigs. Nat Commun. 2024;15:3361.

Article  PubMed  PubMed Central  Google Scholar 

Wang HT, Maeda A, Sakai R, et al. Human CD31 on porcine cells suppresses xenogeneic neutrophil-mediated cytotoxicity via the inhibition of NETosis. Xenotransplantation. 2018;25: e12396.

Article  PubMed  Google Scholar 

Yamada K, Sykes M, Sachs DH. Tolerance in xenotransplantation. Curr Opin Organ Transplant. 2017;22:522–8.

Article  PubMed  PubMed Central  Google Scholar 

Xu H, Zhang X, Mannon RB, Kirk AD. Platelet-derived or soluble CD154 induces vascularized allograft rejection independent of cell-bound CD154. J Clin Invest. 2006;116:769–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vo AA, Petrozzino J, Yeung K, et al. Efficacy, outcomes, and cost-effectiveness of desensitization using IVIG and rituximab. Transplantation. 2013;95(6):852–8.

Article  CAS  PubMed  Google Scholar 

Griffith BP, Goerlich CE, Singh AK, et al. Genetically modified porcine-to-human cardiac xenotransplantation. N Engl J Med. 2022;387(1):35–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perrin S, Magill M. The inhibition of CD40/CD154 costimulatory signaling in the prevention of renal transplant rejection in nonhuman primates: a systematic review and meta analysis. Front Immunol. 2022;13: 861471.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samant M, Ziemniak J, Paolini JF. First-in-human phase 1 randomized trial with the anti-CD40 monoclonal antibody KPL-404: safety, tolerability, receptor occupancy, and suppression of T-cell-dependent antibody response. J Pharmacol Exp Ther. 2023;387(3):306–14.

Article  CAS  PubMed  Google Scholar 

Sakai H, Tanaka Y, Tanaka A, et al. TLR-MyD88 signaling blockades inhibit refractory B-1b cell immune responses to transplant-related glycan antigens. Am J Transplant. 2021;21(4):1427–39.

Article  CAS  PubMed  Google Scholar 

Yamamoto T, Cui Y, Patel D, et al. Effect of intravenous immunoglobulin (IVIg) on primate complement-dependent cytotoxicity of genetically engineered pig cells: relevance to clinical xenotransplantation. Sci Rep. 2020;10(1):11747.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Keyzer K, Van Laecke S, Peeters P, et al. Human cytomegalovirus and kidney transplantation: a clinician’s update. Am J Kidney Dis. 2011;58(1):118–26.

Article  PubMed  Google Scholar 

Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: biology and clinical disease. Cell. 2022;185(20):3652–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paya CV, Fung JJ, Nalesnik MA, et al. Epstein-Barr virus-induced posttransplant lymphoproliferative disorders. ASTS/ASTP EBV-PTLD Task Force and The Mayo Clinic organized international consensus development meeting. Transplantation. 1999;68(10):1517–25.

Article  CAS  PubMed  Google Scholar 

Jamboti JS. BK virus nephropathy in renal transplant recipients. Nephrology. 2016;21(8):647–54.

Article  PubMed  Google Scholar 

Mehta SA, Saharia KK, Nellore A, et al. Infection and clinical xenotransplantation: guidance from the Infectious Disease Community of Practice of the American Society of Transplantation. Am J Transplant. 2023;23(3):309–15.

Article  PubMed  Google Scholar 

Niu D, Wei H-J, Lin L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017;357(6357):1303–7.

Comments (0)

No login
gif