Effect of ECM nanostructures in decellularized small intestine on differentiation of intestinal epithelial model cells

Buchman AL, Scolapio J, Fryer J. AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology. 2003. https://doi.org/10.1016/s0016-5085(03)70064-x.

Article  PubMed  Google Scholar 

Duggan CP, Jaksic T. Pediatric intestinal failure. N Engl J Med. 2017. https://doi.org/10.1056/NEJMra1602650.

Article  PubMed  Google Scholar 

Thompson JS, Rochling F, Mercer D. Current management of short bowel syndrome. Curr Probl Surg. 2012. https://doi.org/10.1067/j.cpsurg.2012.01.001.

Article  PubMed  Google Scholar 

Nightingale J, Woodward JM. Small bowel and nutrition committee of the British Society of gastroenterology. Guidelines for management of patients with a short bowel. Gut. 2006. https://doi.org/10.1136/gut.2006.091108.

Article  PubMed  PubMed Central  Google Scholar 

Kesseli S, Sudan D. Small bowel transplantation. Surg Clin North Am. 2019. https://doi.org/10.1016/j.suc.2018.09.008.

Article  PubMed  Google Scholar 

Faubion WA Jr, Loftus EV Jr, Harmsen WS, Zinsmeister AR, Sandborn WJ. The natural history of corticosteroid therapy for inflammatory bowel disease: a population-based study. Gastroenterology. 2001. https://doi.org/10.1053/gast.2001.26279.

Article  PubMed  Google Scholar 

Khan KJ, Dubinsky MC, Ford AC, Ullman TA, Talley NJ, Moayyedi P. Efficacy of immunosuppressive therapy for inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol. 2011. https://doi.org/10.1038/ajg.2011.64.

Article  PubMed  PubMed Central  Google Scholar 

Sugimoto S, Kobayashi E, Fujii M, Ohta Y, Arai K, Matano M, Ishikawa K, Miyamoto K, Toshimitsu K, Takahashi S, Nanki K, Hakamata Y, Kanai T, Sato T. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature. 2021. https://doi.org/10.1038/s41586-021-03247-2.

Article  PubMed  Google Scholar 

Koppes AN, Kamath M, Pfluger CA, Burkey DD, Dokmeci M, Wang L, Carrier RL. Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of parylene C. Biofabrication. 2016. https://doi.org/10.1088/1758-5090/8/3/035011.

Article  PubMed  PubMed Central  Google Scholar 

Martignoni M, Groothuis GMM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006. https://doi.org/10.1517/17425255.2.6.875.

Article  PubMed  Google Scholar 

Kappus H, Schmahl D. Thalidomide metabolism and hydrolysis: mechanisms and implications. Chem Biol Interact. 1985. https://doi.org/10.1016/0009-2797(85)90002-2.

Article  Google Scholar 

Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989. https://doi.org/10.1016/0016-5085(89)91658-6.

Article  PubMed  Google Scholar 

Faria MA, Araújo A, Pinto E, Oliveira C, Oliva-Teles MT, Almeida A, Delerue-Matos C, Ferreira IMPLVO. Bioaccessibility and intestinal uptake of minerals from different types of home-cooked and ready-to-eat beans. J Funct Foods 2018; https://doi.org/10.1016/j.jff.2018.10.001.

Rodríguez-Ramiro I, González-Soltero R, González-Soltero M, et al. Estimation of the iron bioavailability in green vegetables using an in vitro digestion/Caco-2 cell model. Food Chem. 2019. https://doi.org/10.1016/j.foodchem.2019.125292.

Article  PubMed  Google Scholar 

Brafman DA, Ben-David U. Pluripotent stem cell platforms for drug discovery. Trends Biotechnol. 2017. https://doi.org/10.1016/j.tibtech.2017.01.003.

Article  Google Scholar 

Estudante M, Morais JG, Soveral G, Benet LZ. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 2013. https://doi.org/10.1016/j.addr.2012.09.042.

Article  PubMed  Google Scholar 

Wang Y, Gunasekara DB, Reed MI, et al. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials. 2017. https://doi.org/10.1016/j.biomaterials.2017.03.029.

Article  PubMed  PubMed Central  Google Scholar 

Balimane PV, Chong S. Cell culture-based models for intestinal permeability: a critique. Drug Discov Today. 2005. https://doi.org/10.1016/S1359-6446(04)03354-9.

Article  PubMed  Google Scholar 

Kim S, Yi B, Chi M, et al. Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression. Integr Biol (Camb). 2014. https://doi.org/10.1039/c4ib00157e.

Article  PubMed  Google Scholar 

Creff J, Courson R, Mangeat T, et al. Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography. Biomaterials. 2019. https://doi.org/10.1016/j.biomaterials.2019.119404.

Article  PubMed  Google Scholar 

Wang Y, Kim R, Gunasekara DB, et al. Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer. Cell Mol Gastroenterol Hepatol. 2018. https://doi.org/10.1016/j.jcmgh.2017.10.007.

Article  PubMed  PubMed Central  Google Scholar 

Hinman SS, Wang Y, Allbritton NL. Photopatterned membranes and chemical gradients enable scalable phenotypic organization of primary human colon epithelial models. Anal Chem. 2019. https://doi.org/10.1021/acs.analchem.9b04217.

Article  PubMed  PubMed Central  Google Scholar 

Kim W, Kim GH. An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink. Theranostics. 2020. https://doi.org/10.7150/thno.41225.

Article  PubMed  PubMed Central  Google Scholar 

Xi W, Saleh J, Yamada A, Tomba C, Mercier B, Janel S, Dang T, Soleilhac M, Djemat A, Wu H, Romagnolo B, Lafont F, Mège R-M, Chen Y, Delacour D. Modulation of designer biomimetic matrices for optimized differentiated intestinal epithelial cultures. Biomaterials. 2022. https://doi.org/10.1016/j.biomaterials.2022.121380.

Article  PubMed  Google Scholar 

Xi W, Saleh J, Yamada A, Tomba C, Mercier B, Janel S, Dang T, Ladoux B. Modulation of designer biomimetic matrices for optimized differentiated intestinal epithelial cultures. Biomaterials. 2022. https://doi.org/10.1016/j.biomaterials.2022.121380.

Article  PubMed  Google Scholar 

Salimbeigi G, Collins MN, O’Connell CD, Duffy GP, Ruiz-Hernandez E, Kelly DJ. Basement membrane properties and their recapitulation in organ-on-chip applications. Acta Biomater. 2022. https://doi.org/10.1016/j.actbio.2022.05.015.

Article  Google Scholar 

Patient JD, Hajiali H, Harris K, Abrahamsson B, Tannergren C, White LJ, Ghaemmaghami AM, Williams PM, Roberts CJ, Rose FRAJ. Nanofibrous scaffolds support a 3D in vitro permeability model of the human intestinal epithelium. Front Pharmacol. 2019. https://doi.org/10.3389/fphar.2019.00456.

Article  PubMed  PubMed Central  Google Scholar 

Pusch J, Votteler M, Göhler S, Engl J, Hampel M, Walles H, Schenke-Layland K. The physiological performance of a three-dimensional model that mimics the microenvironment of the small intestine. Biomaterials. 2011. https://doi.org/10.1016/j.biomaterials.2011.06.035.

Article  PubMed  Google Scholar 

Nietzer S, Baur F, Sieber S, Hansmann J, Schwarz T, Stoffer C, Häfner H, Gasser M, Waaga-Gasser AM, Walles H, Dandekar G. Mimicking metastases including tumor stroma: a new technique to generate a three-dimensional colorectal cancer model based on a biological decellularized intestinal scaffold. Tissue Eng Part C Methods. 2016. https://doi.org/10.1089/ten.TEC.2015.0557.

Article  PubMed  PubMed Central  Google Scholar 

Kasendra M, Tovaglieri A, Sontheimer-Phelps A, Jalili-Firoozinezhad S, Bein A, Chalkiadaki A, Scholl W, Zhang C, Rickner H, Richmond CA, Li H, Breault DT, Ingber DE. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-21201-7.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif