Buchman AL, Scolapio J, Fryer J. AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology. 2003. https://doi.org/10.1016/s0016-5085(03)70064-x.
Duggan CP, Jaksic T. Pediatric intestinal failure. N Engl J Med. 2017. https://doi.org/10.1056/NEJMra1602650.
Thompson JS, Rochling F, Mercer D. Current management of short bowel syndrome. Curr Probl Surg. 2012. https://doi.org/10.1067/j.cpsurg.2012.01.001.
Nightingale J, Woodward JM. Small bowel and nutrition committee of the British Society of gastroenterology. Guidelines for management of patients with a short bowel. Gut. 2006. https://doi.org/10.1136/gut.2006.091108.
Article PubMed PubMed Central Google Scholar
Kesseli S, Sudan D. Small bowel transplantation. Surg Clin North Am. 2019. https://doi.org/10.1016/j.suc.2018.09.008.
Faubion WA Jr, Loftus EV Jr, Harmsen WS, Zinsmeister AR, Sandborn WJ. The natural history of corticosteroid therapy for inflammatory bowel disease: a population-based study. Gastroenterology. 2001. https://doi.org/10.1053/gast.2001.26279.
Khan KJ, Dubinsky MC, Ford AC, Ullman TA, Talley NJ, Moayyedi P. Efficacy of immunosuppressive therapy for inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol. 2011. https://doi.org/10.1038/ajg.2011.64.
Article PubMed PubMed Central Google Scholar
Sugimoto S, Kobayashi E, Fujii M, Ohta Y, Arai K, Matano M, Ishikawa K, Miyamoto K, Toshimitsu K, Takahashi S, Nanki K, Hakamata Y, Kanai T, Sato T. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature. 2021. https://doi.org/10.1038/s41586-021-03247-2.
Koppes AN, Kamath M, Pfluger CA, Burkey DD, Dokmeci M, Wang L, Carrier RL. Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of parylene C. Biofabrication. 2016. https://doi.org/10.1088/1758-5090/8/3/035011.
Article PubMed PubMed Central Google Scholar
Martignoni M, Groothuis GMM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol. 2006. https://doi.org/10.1517/17425255.2.6.875.
Kappus H, Schmahl D. Thalidomide metabolism and hydrolysis: mechanisms and implications. Chem Biol Interact. 1985. https://doi.org/10.1016/0009-2797(85)90002-2.
Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989. https://doi.org/10.1016/0016-5085(89)91658-6.
Faria MA, Araújo A, Pinto E, Oliveira C, Oliva-Teles MT, Almeida A, Delerue-Matos C, Ferreira IMPLVO. Bioaccessibility and intestinal uptake of minerals from different types of home-cooked and ready-to-eat beans. J Funct Foods 2018; https://doi.org/10.1016/j.jff.2018.10.001.
Rodríguez-Ramiro I, González-Soltero R, González-Soltero M, et al. Estimation of the iron bioavailability in green vegetables using an in vitro digestion/Caco-2 cell model. Food Chem. 2019. https://doi.org/10.1016/j.foodchem.2019.125292.
Brafman DA, Ben-David U. Pluripotent stem cell platforms for drug discovery. Trends Biotechnol. 2017. https://doi.org/10.1016/j.tibtech.2017.01.003.
Estudante M, Morais JG, Soveral G, Benet LZ. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 2013. https://doi.org/10.1016/j.addr.2012.09.042.
Wang Y, Gunasekara DB, Reed MI, et al. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials. 2017. https://doi.org/10.1016/j.biomaterials.2017.03.029.
Article PubMed PubMed Central Google Scholar
Balimane PV, Chong S. Cell culture-based models for intestinal permeability: a critique. Drug Discov Today. 2005. https://doi.org/10.1016/S1359-6446(04)03354-9.
Kim S, Yi B, Chi M, et al. Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression. Integr Biol (Camb). 2014. https://doi.org/10.1039/c4ib00157e.
Creff J, Courson R, Mangeat T, et al. Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography. Biomaterials. 2019. https://doi.org/10.1016/j.biomaterials.2019.119404.
Wang Y, Kim R, Gunasekara DB, et al. Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer. Cell Mol Gastroenterol Hepatol. 2018. https://doi.org/10.1016/j.jcmgh.2017.10.007.
Article PubMed PubMed Central Google Scholar
Hinman SS, Wang Y, Allbritton NL. Photopatterned membranes and chemical gradients enable scalable phenotypic organization of primary human colon epithelial models. Anal Chem. 2019. https://doi.org/10.1021/acs.analchem.9b04217.
Article PubMed PubMed Central Google Scholar
Kim W, Kim GH. An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink. Theranostics. 2020. https://doi.org/10.7150/thno.41225.
Article PubMed PubMed Central Google Scholar
Xi W, Saleh J, Yamada A, Tomba C, Mercier B, Janel S, Dang T, Soleilhac M, Djemat A, Wu H, Romagnolo B, Lafont F, Mège R-M, Chen Y, Delacour D. Modulation of designer biomimetic matrices for optimized differentiated intestinal epithelial cultures. Biomaterials. 2022. https://doi.org/10.1016/j.biomaterials.2022.121380.
Xi W, Saleh J, Yamada A, Tomba C, Mercier B, Janel S, Dang T, Ladoux B. Modulation of designer biomimetic matrices for optimized differentiated intestinal epithelial cultures. Biomaterials. 2022. https://doi.org/10.1016/j.biomaterials.2022.121380.
Salimbeigi G, Collins MN, O’Connell CD, Duffy GP, Ruiz-Hernandez E, Kelly DJ. Basement membrane properties and their recapitulation in organ-on-chip applications. Acta Biomater. 2022. https://doi.org/10.1016/j.actbio.2022.05.015.
Patient JD, Hajiali H, Harris K, Abrahamsson B, Tannergren C, White LJ, Ghaemmaghami AM, Williams PM, Roberts CJ, Rose FRAJ. Nanofibrous scaffolds support a 3D in vitro permeability model of the human intestinal epithelium. Front Pharmacol. 2019. https://doi.org/10.3389/fphar.2019.00456.
Article PubMed PubMed Central Google Scholar
Pusch J, Votteler M, Göhler S, Engl J, Hampel M, Walles H, Schenke-Layland K. The physiological performance of a three-dimensional model that mimics the microenvironment of the small intestine. Biomaterials. 2011. https://doi.org/10.1016/j.biomaterials.2011.06.035.
Nietzer S, Baur F, Sieber S, Hansmann J, Schwarz T, Stoffer C, Häfner H, Gasser M, Waaga-Gasser AM, Walles H, Dandekar G. Mimicking metastases including tumor stroma: a new technique to generate a three-dimensional colorectal cancer model based on a biological decellularized intestinal scaffold. Tissue Eng Part C Methods. 2016. https://doi.org/10.1089/ten.TEC.2015.0557.
Article PubMed PubMed Central Google Scholar
Kasendra M, Tovaglieri A, Sontheimer-Phelps A, Jalili-Firoozinezhad S, Bein A, Chalkiadaki A, Scholl W, Zhang C, Rickner H, Richmond CA, Li H, Breault DT, Ingber DE. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-21201-7.
Comments (0)