Current status and prospects of genetically modified porcine-to-human cardiac xenotransplantation

Griffith BP, Goerlich CE, Singh AK, et al. Genetically modified porcine-to-human cardiac xenotransplantation. N Engl J Med. 2022. https://doi.org/10.1056/NEJMoa2201422.

Article  PubMed  PubMed Central  Google Scholar 

Mohiuddin MM, Singh AK, Scobie L, et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet. 2023;402:397–410. https://doi.org/10.1016/s0140-6736(23)00775-4.

Article  PubMed  PubMed Central  Google Scholar 

Moazami N, Stern JM, Khalil K, et al. Pig-to-human heart xenotransplantation in two recently deceased human recipients. Nat Med. 2023;29:1989–97. https://doi.org/10.1038/s41591-023-02471-9.

Article  CAS  PubMed  Google Scholar 

Shimokawa H, Miura M, Nochioka K, Sakata Y. Heart failure as a general pandemic in Asia. Eur J Heart Fail. 2015;17:884–92. https://doi.org/10.1002/ejhf.319.

Article  PubMed  Google Scholar 

Saito S, Miyagawa S, Kawamura T, et al. How should cardiac xenotransplantation be initiated in Japan? Surg Today. 2024. https://doi.org/10.1007/s00595-024-02861-7.

Article  PubMed  PubMed Central  Google Scholar 

Hardy JD, Chavez CM. The first heart transplant in man: historical reexamination of the 1964 case in the light of current clinical experience. Transpl Proc. 1969;1:717–25.

CAS  Google Scholar 

Shu S, Ren J, Song J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Fail Rev. 2022;27:71–91. https://doi.org/10.1007/s10741-020-09989-x.

Article  PubMed  Google Scholar 

Galili U, Swanson K. Gene sequences suggest inactivation of alpha-1,3-galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc Natl Acad Sci USA. 1991;88:7401–4. https://doi.org/10.1073/pnas.88.16.7401.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyagawa S, Maeda A, Toyama C, et al. Aspects of the complement system in New Era of xenotransplantation. Front Immunol. 2022;13: 860165. https://doi.org/10.3389/fimmu.2022.860165.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGregor CG, Davies WR, Oi K, et al. Cardiac xenotransplantation: recent preclinical progress with 3-month median survival. J Thorac Cardiovasc Surg. 2005;130:844–51. https://doi.org/10.1016/j.jtcvs.2005.04.017.

Article  PubMed  Google Scholar 

Houser SL, Kuwaki K, Knosalla C, et al. Thrombotic microangiopathy and graft arteriopathy in pig hearts following transplantation into baboons. Xenotransplantation. 2004;11:416–25. https://doi.org/10.1111/j.1399-3089.2004.00155.x.

Article  PubMed  Google Scholar 

Vial CM, Ostlie DJ, Bhatti FN, et al. Life supporting function for over one month of a transgenic porcine heart in a baboon. J Heart Lung Transplant. 2000;19:224–9. https://doi.org/10.1016/s1053-2498(99)00099-6.

Article  CAS  PubMed  Google Scholar 

Adams DH, Chen RH, Kadner A. Cardiac xenotransplantation: clinical experience and future direction. Ann Thorac Surg. 2000;70:320–6. https://doi.org/10.1016/s0003-4975(00)01281-9.

Article  CAS  PubMed  Google Scholar 

Adams DH, Chen RH, Kadner A, Naficy S. Technique for heterotopic pig heart xenotransplantation in primates. Ann Thorac Surg. 1999;68:265–8. https://doi.org/10.1016/s0003-4975(99)00488-9.

Article  CAS  PubMed  Google Scholar 

Diamond LE, McCurry KR, Martin MJ, et al. Characterization of transgenic pigs expressing functionally active human CD59 on cardiac endothelium. Transplantation. 1996;61:1241–9. https://doi.org/10.1097/00007890-199604270-00021.

Article  CAS  PubMed  Google Scholar 

Phelps CJ, Koike C, Vaught TD, et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science. 2003;299:411–4. https://doi.org/10.1126/science.1078942.

Article  CAS  PubMed  Google Scholar 

Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol. 2002;20:251–5. https://doi.org/10.1038/nbt0302-251.

Article  CAS  PubMed  Google Scholar 

Singh AK, Goerlich CE, Shah AM, et al. Cardiac xenotransplantation: progress in preclinical models and prospects for clinical translation. Transpl Int. 2022;35:10171. https://doi.org/10.3389/ti.2022.10171.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO. hCD46. hTBM pig-to-primate cardiac xenograft. Nat Commun. 2016;7:11138. https://doi.org/10.1038/ncomms11138.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali A, Kurome M, Kessler B, Kemter E, Wolf E. What genetic modifications of source pigs are essential and sufficient for cell, tissue, and organ xenotransplantation? Transpl Int. 2024;37:13681. https://doi.org/10.3389/ti.2024.13681.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peterson L, Yacoub MH, Ayares D, et al. Physiological basis for xenotransplantation from genetically modified pigs to humans. Physiol Rev. 2024;104:1409–59. https://doi.org/10.1152/physrev.00041.2023.

Article  PubMed  PubMed Central  Google Scholar 

Cowan PJ, Robson SC. Progress towards overcoming coagulopathy and hemostatic dysfunction associated with xenotransplantation. Int J Surg. 2015;23:296–300. https://doi.org/10.1016/j.ijsu.2015.07.682.

Article  PubMed  Google Scholar 

Roussel JC, Moran CJ, Salvaris EJ, Nandurkar HH, d’Apice AJ, Cowan PJ. Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Trans J Am Soc Trans Am Soc Trans Surg. 2008;8:1101–12. https://doi.org/10.1111/j.1600-6143.2008.02210.x.

Article  CAS  Google Scholar 

Okazawa H, Motegi S, Ohyama N, et al. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. Journal of immunology (Baltimore, Md : 1950). 2005;174:2004–11. https://doi.org/10.4049/jimmunol.174.4.2004.

Takeuchi K, Ariyoshi Y, Shimizu A, et al. Expression of human CD47 in pig glomeruli prevents proteinuria and prolongs graft survival following pig-to-baboon xenotransplantation. Xenotransplantation. 2021;28: e12708. https://doi.org/10.1111/xen.12708.

Article  PubMed  PubMed Central  Google Scholar 

Hinrichs A, Riedel EO, Klymiuk N, et al. Growth hormone receptor knockout to reduce the size of donor pigs for preclinical xenotransplantation studies. Xenotransplantation. 2021;28: e12664. https://doi.org/10.1111/xen.12664.

Article  PubMed  Google Scholar 

Patel PM, Connolly MR, Coe TM, et al. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol. 2021;12: 681504. https://doi.org/10.3389/fimmu.2021.681504.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goerlich CE, Griffith B, Singh AK, et al. Blood cardioplegia induction, perfusion storage and graft dysfunction in cardiac xenotransplantation. Front Immunol. 2021;12: 667093. https://doi.org/10.3389/fimmu.2021.667093.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu J, Murthy V, Liu SL. Relating GPI-anchored Ly6 proteins uPAR and CD59 to viral infection. Viruses. 2019. https://doi.org/10.3390/v11111060.

Article  PubMed  PubMed Central  Google Scholar 

Bergelson JM, Chan M, Solomon KR, St John NF, Lin H, Finberg RW. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc Natl Acad Sci USA. 1994;91:6245–8. https://doi.org/10.1073/pnas.91.13.6245

Comments (0)

No login
gif