Griffith BP, Goerlich CE, Singh AK, et al. Genetically modified porcine-to-human cardiac xenotransplantation. N Engl J Med. 2022. https://doi.org/10.1056/NEJMoa2201422.
Article PubMed PubMed Central Google Scholar
Mohiuddin MM, Singh AK, Scobie L, et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet. 2023;402:397–410. https://doi.org/10.1016/s0140-6736(23)00775-4.
Article PubMed PubMed Central Google Scholar
Moazami N, Stern JM, Khalil K, et al. Pig-to-human heart xenotransplantation in two recently deceased human recipients. Nat Med. 2023;29:1989–97. https://doi.org/10.1038/s41591-023-02471-9.
Article CAS PubMed Google Scholar
Shimokawa H, Miura M, Nochioka K, Sakata Y. Heart failure as a general pandemic in Asia. Eur J Heart Fail. 2015;17:884–92. https://doi.org/10.1002/ejhf.319.
Saito S, Miyagawa S, Kawamura T, et al. How should cardiac xenotransplantation be initiated in Japan? Surg Today. 2024. https://doi.org/10.1007/s00595-024-02861-7.
Article PubMed PubMed Central Google Scholar
Hardy JD, Chavez CM. The first heart transplant in man: historical reexamination of the 1964 case in the light of current clinical experience. Transpl Proc. 1969;1:717–25.
Shu S, Ren J, Song J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Fail Rev. 2022;27:71–91. https://doi.org/10.1007/s10741-020-09989-x.
Galili U, Swanson K. Gene sequences suggest inactivation of alpha-1,3-galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc Natl Acad Sci USA. 1991;88:7401–4. https://doi.org/10.1073/pnas.88.16.7401.
Article CAS PubMed PubMed Central Google Scholar
Miyagawa S, Maeda A, Toyama C, et al. Aspects of the complement system in New Era of xenotransplantation. Front Immunol. 2022;13: 860165. https://doi.org/10.3389/fimmu.2022.860165.
Article CAS PubMed PubMed Central Google Scholar
McGregor CG, Davies WR, Oi K, et al. Cardiac xenotransplantation: recent preclinical progress with 3-month median survival. J Thorac Cardiovasc Surg. 2005;130:844–51. https://doi.org/10.1016/j.jtcvs.2005.04.017.
Houser SL, Kuwaki K, Knosalla C, et al. Thrombotic microangiopathy and graft arteriopathy in pig hearts following transplantation into baboons. Xenotransplantation. 2004;11:416–25. https://doi.org/10.1111/j.1399-3089.2004.00155.x.
Vial CM, Ostlie DJ, Bhatti FN, et al. Life supporting function for over one month of a transgenic porcine heart in a baboon. J Heart Lung Transplant. 2000;19:224–9. https://doi.org/10.1016/s1053-2498(99)00099-6.
Article CAS PubMed Google Scholar
Adams DH, Chen RH, Kadner A. Cardiac xenotransplantation: clinical experience and future direction. Ann Thorac Surg. 2000;70:320–6. https://doi.org/10.1016/s0003-4975(00)01281-9.
Article CAS PubMed Google Scholar
Adams DH, Chen RH, Kadner A, Naficy S. Technique for heterotopic pig heart xenotransplantation in primates. Ann Thorac Surg. 1999;68:265–8. https://doi.org/10.1016/s0003-4975(99)00488-9.
Article CAS PubMed Google Scholar
Diamond LE, McCurry KR, Martin MJ, et al. Characterization of transgenic pigs expressing functionally active human CD59 on cardiac endothelium. Transplantation. 1996;61:1241–9. https://doi.org/10.1097/00007890-199604270-00021.
Article CAS PubMed Google Scholar
Phelps CJ, Koike C, Vaught TD, et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science. 2003;299:411–4. https://doi.org/10.1126/science.1078942.
Article CAS PubMed Google Scholar
Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol. 2002;20:251–5. https://doi.org/10.1038/nbt0302-251.
Article CAS PubMed Google Scholar
Singh AK, Goerlich CE, Shah AM, et al. Cardiac xenotransplantation: progress in preclinical models and prospects for clinical translation. Transpl Int. 2022;35:10171. https://doi.org/10.3389/ti.2022.10171.
Article CAS PubMed PubMed Central Google Scholar
Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO. hCD46. hTBM pig-to-primate cardiac xenograft. Nat Commun. 2016;7:11138. https://doi.org/10.1038/ncomms11138.
Article CAS PubMed PubMed Central Google Scholar
Ali A, Kurome M, Kessler B, Kemter E, Wolf E. What genetic modifications of source pigs are essential and sufficient for cell, tissue, and organ xenotransplantation? Transpl Int. 2024;37:13681. https://doi.org/10.3389/ti.2024.13681.
Article CAS PubMed PubMed Central Google Scholar
Peterson L, Yacoub MH, Ayares D, et al. Physiological basis for xenotransplantation from genetically modified pigs to humans. Physiol Rev. 2024;104:1409–59. https://doi.org/10.1152/physrev.00041.2023.
Article PubMed PubMed Central Google Scholar
Cowan PJ, Robson SC. Progress towards overcoming coagulopathy and hemostatic dysfunction associated with xenotransplantation. Int J Surg. 2015;23:296–300. https://doi.org/10.1016/j.ijsu.2015.07.682.
Roussel JC, Moran CJ, Salvaris EJ, Nandurkar HH, d’Apice AJ, Cowan PJ. Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Trans J Am Soc Trans Am Soc Trans Surg. 2008;8:1101–12. https://doi.org/10.1111/j.1600-6143.2008.02210.x.
Okazawa H, Motegi S, Ohyama N, et al. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. Journal of immunology (Baltimore, Md : 1950). 2005;174:2004–11. https://doi.org/10.4049/jimmunol.174.4.2004.
Takeuchi K, Ariyoshi Y, Shimizu A, et al. Expression of human CD47 in pig glomeruli prevents proteinuria and prolongs graft survival following pig-to-baboon xenotransplantation. Xenotransplantation. 2021;28: e12708. https://doi.org/10.1111/xen.12708.
Article PubMed PubMed Central Google Scholar
Hinrichs A, Riedel EO, Klymiuk N, et al. Growth hormone receptor knockout to reduce the size of donor pigs for preclinical xenotransplantation studies. Xenotransplantation. 2021;28: e12664. https://doi.org/10.1111/xen.12664.
Patel PM, Connolly MR, Coe TM, et al. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol. 2021;12: 681504. https://doi.org/10.3389/fimmu.2021.681504.
Article CAS PubMed PubMed Central Google Scholar
Goerlich CE, Griffith B, Singh AK, et al. Blood cardioplegia induction, perfusion storage and graft dysfunction in cardiac xenotransplantation. Front Immunol. 2021;12: 667093. https://doi.org/10.3389/fimmu.2021.667093.
Article CAS PubMed PubMed Central Google Scholar
Yu J, Murthy V, Liu SL. Relating GPI-anchored Ly6 proteins uPAR and CD59 to viral infection. Viruses. 2019. https://doi.org/10.3390/v11111060.
Article PubMed PubMed Central Google Scholar
Bergelson JM, Chan M, Solomon KR, St John NF, Lin H, Finberg RW. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc Natl Acad Sci USA. 1994;91:6245–8. https://doi.org/10.1073/pnas.91.13.6245
Comments (0)