Development of transcatheter implantable autologous tissue-engineered pulmonary valves using in-body tissue architecture

Hammermeister K, Sethi GK, Henderson WG, Grover FL, Oprian C, Rahimtoola SH. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the veterans affairs randomized trial. J Am Coll Cardiol. 2000;36:1152–8.

Article  CAS  PubMed  Google Scholar 

Cosgrove DM, Lytle BW, Taylor PC, Camacho MT, Stewart RW, McCarthy PM, et al. The Carpentier–Edwards pericardial aortic valve: ten-year results. J Thorac Cardiovasc Surg. 1995;110:651–62.

Article  CAS  PubMed  Google Scholar 

Konsek H, Sherard C, Bisbee C, Kang L, Turek JW, Rajab TK. Growing heart valve implants for children. J Cardiovasc Dev Dis. 2023;10:148.

CAS  PubMed  PubMed Central  Google Scholar 

Mirani B, Parvin Nejad S, Simmons CA. Recent progress toward clinical translation of tissue-engineered heart valves. Can J Cardiol. 2021;37:1064–77.

Article  PubMed  Google Scholar 

Fioretta ES, Motta SE, Lintas V, Loerakker S, Parker KK, Baaijens FPT, et al. Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat Rev Cardiol. 2020;18:92–116.

Article  PubMed  Google Scholar 

Chester AH, Grande-Allen KJ. Which biological properties of heart valves are relevant to tissue engineering? Front Cardiovasc Med. 2020;7:63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakayama Y, Ishibashi-Ueda H, Takamizawa K. In vivo tissue-engineered small-caliber arterial graft prosthesis consisting of autologous tissue (biotube). Cell Transplant. 2004;13:439–49.

Article  PubMed  Google Scholar 

Hayashida K, Kanda K, Yaku H, Ando J, Nakayama Y. Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): preparation of a prototype model. J Thorac Cardiovasc Surg. 2007;134:152–9.

Article  PubMed  Google Scholar 

Nakayama Y, Takewa Y, Sumikura H, Yamanami M, Matsui Y, Oie T, et al. In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding. J Biomed Mater Res B Appl Biomater. 2015;103:1–11.

Article  PubMed  Google Scholar 

Takewa Y, Yamanami M, Kishimoto Y, Arakawa M, Kanda K, Matsui Y, et al. In vivo evaluation of an in-body, tissue-engineered, completely autologous valved conduit (biovalve type VI) as an aortic valve in a goat model. J Artif Organs. 2013;16:176–84.

Article  CAS  PubMed  Google Scholar 

Funayama M, Furukoshi M, Moriwaki T, Nakayama Y. Development of an in vivo tissue-engineered valved conduit (type S biovalve) using a slitted mold. J Artif Organs. 2015;18:382–6.

Article  PubMed  Google Scholar 

Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C, Bauer F, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 2002;106:3006–8.

Article  PubMed  Google Scholar 

Bonhoeffer P, Boudjemline Y, Saliba Z, Merckx J, Aggoun Y, Bonnet D, et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet. 2000;356:1403–5.

Article  CAS  PubMed  Google Scholar 

Arsalan M, Walther T. Durability of prostheses for transcatheter aortic valve implantation. Nat Rev Cardiol. 2016;13:360–7.

Article  CAS  PubMed  Google Scholar 

Emmert MY, Weber B, Wolint P, Behr L, Sammut S, Frauenfelder T, et al. Stem cell-based transcatheter aortic valve implantation: first experiences in a pre-clinical model. JACC Cardiovasc Interv. 2012;5:874–83.

Article  PubMed  Google Scholar 

Lintas V, Fioretta ES, Motta SE, Dijkman PE, Pensalfini M, Mazza E, et al. Development of a novel human cell-derived tissue-engineered heart valve for transcatheter aortic valve replacement: an in vitro and in vivo feasibility study. J Cardiovasc Transl Res. 2018;11:470–82.

Article  CAS  PubMed  Google Scholar 

Poulis N, Zaytseva P, Gähwiler EKN, Motta SE, Fioretta ES, Cesarovic N, et al. Tissue engineered heart valves for transcatheter aortic valve implantation: current state, challenges, and future developments. Expert Rev Cardiovasc Ther. 2020;18:681–96.

Article  CAS  PubMed  Google Scholar 

Funayama M, Sumikura H, Takewa Y, Tatsumi E, Nakayama Y. Development of self-expanding valved stents with autologous tubular leaflet tissues for transcatheter valve implantation. J Artif Organs. 2015;18:228–35.

Article  CAS  PubMed  Google Scholar 

Sumikura H, Nakayama Y, Ohnuma K, Kishimoto S, Takewa Y, Tatsumi E. In vitro hydrodynamic evaluation of a biovalve with stent (tubular leaflet type) for transcatheter pulmonary valve implantation. J Artif Organs. 2015;18:307–14.

Article  PubMed  Google Scholar 

Schievano S, Coats L, Migliavacca F, Norman W, Frigiola A, Deanfield J, et al. Variations in right ventricular outflow tract morphology following repair of congenital heart disease: implications for percutaneous pulmonary valve implantation. J Cardiovasc Magn Reson. 2007;9:687–95.

Article  PubMed  Google Scholar 

Agwu N, Recto MR, Kheradvar A. Unmet clinical needs for transcatheter pulmonary valves. Ann Biomed Eng. 2023;51:2384–92.

Article  PubMed  PubMed Central  Google Scholar 

Zahn EM, Chang JC, Armer D, Garg R. First human implant of the Alterra adaptive PrestentTM: a new self-expanding device designed to remodel the right ventricular outflow tract. Catheter Cardiovasc Interv. 2018;91:1125–9.

Article  PubMed  PubMed Central  Google Scholar 

Furukoshi M, Moriwaki T, Nakayama Y. Development of an in vivo tissue-engineered vascular graft with designed wall thickness (biotube type C) based on a novel caged mold. J Artif Organs. 2016;19:54–61.

Article  CAS  PubMed  Google Scholar 

Terazawa T, Nishimura T, Mitani T, Ichii O, Ikeda T, Kosenda K, et al. Wall thickness control in biotubes prepared using type-C mold. J Artif Organs. 2018;21:387–91.

Article  CAS  PubMed  Google Scholar 

Gillespie MJ, McElhinney DB, Jones TK, Levi DS, Asnes J, Gray RG, et al. 1-year outcomes in a pooled cohort of harmony transcatheter pulmonary valve clinical trial participants. JACC Cardiovasc Interv. 2023;16:1917–28.

Article  PubMed  Google Scholar 

Xiling Z, Puehler T, Seiler J, Gorb SN, Sathananthan J, Sellers S, et al. Tissue engineered transcatheter pulmonary valved stent implantation: current state and future prospect. Int J Mol Sci. 2022;23:723.

Article  Google Scholar 

Takewa Y, Sumikura H, Kishimoto S, Naito N, Iizuka K, Akiyama D, et al. Implanted in-body tissue-engineered heart valve can adapt the histological structure to the environment. ASAIO J. 2018;64:395–405.

Article  PubMed  Google Scholar 

Sumikura H, Nakayama Y, Ohnuma K, Takewa Y, Tatsumi E. Development of a stent-biovalve with round-shaped leaflets: in vitro hydrodynamic evaluation for transcatheter pulmonary valve implantation (TPVI). J Artif Organs. 2016;19:357–63.

Article  CAS  PubMed  Google Scholar 

Sellers SL, Turner CT, Sathananthan J, Cartlidge TRG, Sin F, Bouchareb R, et al. Transcatheter aortic heart valves: histological analysis providing insight to leaflet thickening and structural valve degeneration. JACC Cardiovasc Imaging. 2019;12:135–45.

Article  PubMed  Google Scholar 

Chakravarty T, Søndergaard L, Friedman J, De Backer O, Berman D, Kofoed KF, et al. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. Lancet. 2017;389:2383–92.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif