Effects of calcium oxalate crystals on neutrophil cellular proteome and functions: implications for nephrolithiasis

Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. Kidney stones. Nat Rev Dis Primers. 2016;2:16008.

PubMed  PubMed Central  Google Scholar 

O’Kell AL, Grant DC, Khan SR. Pathogenesis of calcium oxalate urinary stone disease: species comparison of humans, dogs, and cats. Urolithiasis. 2017;45:329–36.

PubMed  PubMed Central  Google Scholar 

Sassanarakkit S, Hadpech S, Thongboonkerd V. Theranostic roles of machine learning in clinical management of kidney stone disease. Comput Struct Biotechnol J. 2023;21:260–6.

PubMed  Google Scholar 

Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on neutrophil function in severe inflammation. Front Immunol. 2018;9:2171.

PubMed  PubMed Central  Google Scholar 

Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113.

PubMed  PubMed Central  Google Scholar 

Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18:134–47.

CAS  PubMed  Google Scholar 

Desai J, Foresto-Neto O, Honarpisheh M, Steiger S, Nakazawa D, Popper B, et al. Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin. Sci Rep. 2017;7:15003.

PubMed  PubMed Central  Google Scholar 

Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ, et al. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 2013;84:895–901.

CAS  PubMed  PubMed Central  Google Scholar 

Anders HJ, Schaefer L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol. 2014;25:1387–400.

CAS  PubMed  PubMed Central  Google Scholar 

Mulay SR, Evan A, Anders HJ. Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease. Nephrol Dial Transplant. 2014;29:507–14.

CAS  PubMed  Google Scholar 

Rivera M, Cockerill PA, Enders F, Mehta RA, Vaughan L, Vrtiska TJ, et al. Characterization of inner medullary collecting duct plug formation among idiopathic calcium oxalate stone formers. Urology. 2016;94:47–52.

PubMed  Google Scholar 

Viers BR, Lieske JC, Vrtiska TJ, Herrera Hernandez LP, Vaughan LE, Mehta RA, et al. Endoscopic and histologic findings in a cohort of uric acid and calcium oxalate stone formers. Urology. 2015;85:771–6.

PubMed  Google Scholar 

Makki MS, Winfree S, Lingeman JE, Witzmann FA, Worcester EM, Krambeck AE, et al. A precision medicine approach uncovers a unique signature of neutrophils in patients with brushite kidney stones. Kidney Int Rep. 2020;5:663–77.

PubMed  PubMed Central  Google Scholar 

Taguchi K, Hamamoto S, Okada A, Unno R, Kamisawa H, Naiki T, et al. Genome-wide gene expression profiling of randall’s plaques in calcium oxalate stone formers. J Am Soc Nephrol. 2017;28:333–47.

CAS  PubMed  Google Scholar 

Boonla C, Tosukhowong P, Spittau B, Schlosser A, Pimratana C, Krieglstein K. Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi. Clin Chim Acta. 2014;429:81–9.

CAS  PubMed  Google Scholar 

Thongboonkerd V, Semangoen T, Chutipongtanate S. Factors determining types and morphologies of calcium oxalate crystals: molar concentrations, buffering, pH, stirring and temperature. Clin Chim Acta. 2006;367:120–31.

CAS  PubMed  Google Scholar 

Thongboonkerd V, Chutipongtanate S, Semangoen T, Malasit P. Urinary trefoil factor 1 is a novel potent inhibitor of calcium oxalate crystal growth and aggregation. J Urol. 2008;179:1615–9.

CAS  PubMed  Google Scholar 

Chaiyarit S, Mungdee S, Thongboonkerd V. Non-radioactive labelling of calcium oxalate crystals for investigations of crystal-cell interaction and internalization. Anal Methods. 2010;2:1536–41.

CAS  Google Scholar 

Chaiyarit S, Singhto N, Thongboonkerd V. Calcium oxalate monohydrate crystals internalized into renal tubular cells are degraded and dissolved by endolysosomes. Chem Biol Interact. 2016;246:30–5.

CAS  PubMed  Google Scholar 

Kanlaya R, Sintiprungrat K, Chaiyarit S, Thongboonkerd V. Macropinocytosis is the major mechanism for endocytosis of calcium oxalate crystals into renal tubular cells. Cell Biochem Biophys. 2013;67:1171–9.

CAS  PubMed  Google Scholar 

Khamchun S, Yoodee S, Thongboonkerd V. Dual modulatory effects of diosmin on calcium oxalate kidney stone formation processes: Crystallization, growth, aggregation, crystal-cell adhesion, internalization into renal tubular cells, and invasion through extracellular matrix. Biomed Pharmacother. 2021;141:111903.

CAS  PubMed  Google Scholar 

Peerapen P, Boonmark W, Chantarasaka S, Thongboonkerd V. Trigonelline prevents high-glucose-induced endothelial-to-mesenchymal transition, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial EA.hy926 cells. Biomed Pharmacother. 2024;179:117320.

CAS  PubMed  Google Scholar 

Peerapen P, Boonmark W, Putpeerawit P, Sassanarakkit S, Thongboonkerd V. Proteomic and computational analyses followed by functional validation of protective effects of trigonelline against calcium oxalate-induced renal cell deteriorations. Comput Struct Biotechnol J. 2023;21:5851–67.

CAS  PubMed  PubMed Central  Google Scholar 

Noonin C, Itsaranawet T, Thongboonkerd V. Calcium oxalate crystal-induced secretome derived from proximal tubular cells, not that from distal tubular cells, induces renal fibroblast activation. Eur J Med Res. 2023;28:150.

CAS  PubMed  PubMed Central  Google Scholar 

Yoodee S, Peerapen P, Plumworasawat S, Malaitad T, Thongboonkerd V. Identification and characterization of ARID1A-interacting proteins in renal tubular cells and their molecular regulation of angiogenesis. J Transl Med. 2023;21:862.

CAS  PubMed  PubMed Central  Google Scholar 

Kanlaya R, Subkod C, Nanthawuttiphan S, Thongboonkerd V. The protective effect of caffeine against oxalate-induced epithelial-mesenchymal transition in renal tubular cells via mitochondrial preservation. Biomed Pharmacother. 2024;171:116144.

CAS  PubMed  Google Scholar 

Noonin C, Peerapen P, Thongboonkerd V. Contamination of bacterial extracellular vesicles (bEVs) in human urinary extracellular vesicles (uEVs) samples and their effects on uEVs study. J Extracell Biol. 2022;1:e69.

CAS  PubMed  PubMed Central  Google Scholar 

Yoodee S, Noonin C, Sueksakit K, Kanlaya R, Chaiyarit S, Peerapen P, et al. Effects of secretome derived from macrophages exposed to calcium oxalate crystals on renal fibroblast activation. Commun Biol. 2021;4:959.

CAS  PubMed  PubMed Central  Google Scholar 

McGregor R, Jones S, Jeremy RM, Goldblatt D, Moreland NJ. An opsonophagocytic killing assay for the evaluation of group A streptococcus vaccine antisera. Methods Mol Biol. 2020;2136:323–35.

CAS  PubMed  Google Scholar 

Roth H, Samereier M, Begandt D, Pick R, Salvermoser M, Brechtefeld D, et al. Filamin A promotes efficient migration and phagocytosis of neutrophil-like HL-60 cells. Eur J Cell Biol. 2017;96:553–66.

CAS  PubMed  Google Scholar 

Chen ML, Wu S, Tsai TC, Wang LK, Tsai FM. Regulation of neutrophil phagocytosis of Escherichia coli by antipsychotic drugs. Int Immunopharmacol. 2014;23:550–7.

CAS  PubMed  Google Scholar 

Bhakta SB, Lundgren SM, Sesti BN, Flores BA, Akdogan E, Collins SR, et al. Neutrophil-like cells derived from the HL-60 cell-line as a genetically-tractable model for neutrophil degranulation. PLoS One. 2024;19:e0297758.

CAS  PubMed  PubMed Central  Google Scholar 

Meagher LC, Cotter TG. The degranulation response in differentiated HL-60 cells. Clin Exp Immunol. 1988;74:483–8.

CAS  PubMed  PubMed Central  Google Scholar 

Malavez-Cajigas SJ, Marini-Martinez FI, Lacourt-Ventura M, Rosario-Pacheco KJ, Ortiz-Perez NM, Velazquez-Perez B, et al. HL-60 cells as a valuable model to study LPS-induced neutrophil extracellular traps release. Heliyon. 2024;10:e36386.

CAS  PubMed  PubMed Central  Google Scholar 

Guo Y, Gao F, Wang Q, Wang K, Pan S, Pan Z, et al. Differentiation of HL-60 cells in serum-free hematopoietic cell media enhances the production of neutrophil extracellular traps. Exp Ther Med. 2021;21:353.

CAS  PubMed  PubMed Central  Google Scholar 

Scieszka D, Lin YH, Li W, Choudhury S, Yu Y, Freire M. NETome: a model to decode the human genome and proteome of neutrophil extracellular traps. Sci Data. 202

Comments (0)

No login
gif