Degradation of voltage-gated calcium channels: mechanisms and applications in neurological and cardiovascular diseases

Striessnig J, Pinggera A, Kaur G, Bock G, Tuluc P. L-type Ca(2+) channels in heart and brain. Wiley Interdiscip Rev Membr Transp Signal. 2014;3:15–38.

CAS  PubMed  PubMed Central  Google Scholar 

Hofmann F, Flockerzi V, Kahl S, Wegener JW. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev. 2014;94:303–26.

CAS  PubMed  Google Scholar 

Bourinet E, Soong TW, Sutton K, Slaymaker S, Mathews E, Monteil A, Zamponi GW, Nargeot J, Snutch TP. Splicing of alpha 1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat Neurosci. 1999;2:407–15.

CAS  PubMed  Google Scholar 

Soong TW, DeMaria CD, Alvania RS, Zweifel LS, Liang MC, Mittman S, Agnew WS, Yue DT. Systematic identification of splice variants in human P/Q-type channel alpha1(2.1) subunits: implications for current density and Ca2+-dependent inactivation. J Neurosci. 2002;22:10142–52.

CAS  PubMed  PubMed Central  Google Scholar 

Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron. 2014;82:24–45.

CAS  PubMed  Google Scholar 

Schneider T, Neumaier F, Hescheler J, Alpdogan S. Cav2.3 R-type calcium channels: from its discovery to pathogenic de Novo CACNA1E variants: a historical perspective. Pflugers Arch. 2020;472:811–6.

CAS  PubMed  PubMed Central  Google Scholar 

Weiss N, Zamponi GW. T-type calcium channels: from molecule to therapeutic opportunities. Int J Biochem Cell Biol. 2019;108:34–9.

CAS  PubMed  Google Scholar 

Hu Z, Liang MC, Soong TW. Alternative splicing of L-type Ca(V)1.2 calcium channels: implications in cardiovascular diseases. Genes (Basel) 2017, 8.

Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and Pharmacology of Voltage-Gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67:821–70.

CAS  PubMed  PubMed Central  Google Scholar 

Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011;3:a003947.

PubMed  PubMed Central  Google Scholar 

Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, Tedford HW, Hermosilla T, Zamponi GW. The Cavbeta subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat Neurosci. 2011;14:173–80.

CAS  PubMed  Google Scholar 

Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q, Yan N. Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 A resolution. Nature. 2016;537:191–6.

CAS  PubMed  Google Scholar 

Yao X, Gao S, Yan N. Structural basis for pore Blockade of human voltage-gated calcium channel Ca(v)1.3 by motion sickness drug Cinnarizine. Cell Res. 2022;32:946–8.

CAS  PubMed  PubMed Central  Google Scholar 

Gao S, Yao X, Chen J, Huang G, Fan X, Xue L, Li Z, Wu T, Zheng Y, Huang J, et al. Structural basis for human Ca(v)1.2 Inhibition by multiple drugs and the neurotoxin calciseptine. Cell. 2023;186:5363–e53745316.

CAS  PubMed  Google Scholar 

Li Z, Cong Y, Wu T, Wang T, Lou X, Yang X, Yan N. Structural basis for different omega-agatoxin IVA sensitivities of the P-type and Q-type Ca(v)2.1 channels. Cell Res. 2024;34:455–7.

CAS  PubMed  PubMed Central  Google Scholar 

Gao S, Yao X, Yan N. Structure of human Ca(v)2.2 channel blocked by the painkiller Ziconotide. Nature. 2021;596:143–7.

CAS  PubMed  PubMed Central  Google Scholar 

Gao Y, Xu S, Cui X, Xu H, Qiu Y, Wei Y, Dong Y, Zhu B, Peng C, Liu S, et al. Molecular insights into the gating mechanisms of voltage-gated calcium channel Ca(V)2.3. Nat Commun. 2023;14:516.

CAS  PubMed  PubMed Central  Google Scholar 

Zhao Y, Huang G, Wu Q, Wu K, Li R, Lei J, Pan X, Yan N. Cryo-EM structures of Apo and antagonist-bound human Ca(v)3.1. Nature. 2019;576:492–7.

CAS  PubMed  Google Scholar 

He L, Yu Z, Geng Z, Huang Z, Zhang C, Dong Y, Gao Y, Wang Y, Chen Q, Sun L et al. Structure, gating, and pharmacology of human Ca(V)3.3 channel. Nat Commun. 2022;13:2084.

Huang J, Fan X, Jin X, Lyu C, Guo Q, Liu T, Chen J, Davakan A, Lory P, Yan N. Structural basis for human Ca(v)3.2 Inhibition by selective antagonists. Cell Res. 2024;34:440–50.

CAS  PubMed  PubMed Central  Google Scholar 

Ferron L, Zamponi GW. A Tale of two calcium channels: structural Pharmacology of Cav2.1 and Cav3.2. Cell Res. 2024;34:401–2.

CAS  PubMed  PubMed Central  Google Scholar 

Atlas D. The voltage-gated calcium channel functions as the molecular switch of synaptic transmission. Annu Rev Biochem. 2013;82:607–35.

CAS  PubMed  Google Scholar 

Dolphin AC, Lee A. Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat Rev Neurosci. 2020;21:213–29.

CAS  PubMed  PubMed Central  Google Scholar 

Evans RM, Zamponi GW. Presynaptic Ca2 + channels–integration centers for neuronal signaling pathways. Trends Neurosci. 2006;29:617–24.

CAS  PubMed  Google Scholar 

Zamponi GW, Lewis RJ, Todorovic SM, Arneric SP, Snutch TP. Role of voltage-gated calcium channels in ascending pain pathways. Brain Res Rev. 2009;60:84–9.

CAS  PubMed  Google Scholar 

Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch. 2010;460:395–403.

CAS  PubMed  Google Scholar 

Khosravani H, Zamponi GW. Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev. 2006;86:941–66.

CAS  PubMed  Google Scholar 

Berger SM, Bartsch D. The role of L-type voltage-gated calcium channels Cav1.2 and Cav1.3 in normal and pathological brain function. Cell Tissue Res. 2014;357:463–76.

CAS  PubMed  Google Scholar 

Alves VS, Alves-Silva HS, Orts DJB, Ribeiro-Silva L, Arcisio-Miranda M, Oliveira FA. Calcium signaling in neurons and glial cells: role of Cav1 channels. Neuroscience. 2019;421:95–111.

CAS  PubMed  Google Scholar 

Sandoval A, Duran P, Corzo-Lopez A, Fernandez-Gallardo M, Munoz-Herrera D, Leyva-Leyva M, Gonzalez-Ramirez R, Felix R. The role of voltage-gated calcium channels in the pathogenesis of parkinson’s disease. Int J Neurosci. 2024;134:452–61.

CAS  PubMed  Google Scholar 

Hurley MJ, Dexter DT. Voltage-gated calcium channels and parkinson’s disease. Pharmacol Ther. 2012;133:324–33.

CAS  PubMed  Google Scholar 

Correa BHM, Moreira CR, Hildebrand ME, Vieira LB. The role of Voltage-Gated calcium channels in basal ganglia neurodegenerative disorders. Curr Neuropharmacol. 2023;21:183–201.

CAS  PubMed  PubMed Central  Google Scholar 

Breitenkamp AF, Matthes J, Herzig S. Voltage-gated calcium channels and autism spectrum disorders. Curr Mol Pharmacol. 2015;8:123–32.

CAS  PubMed  Google Scholar 

Liao X, Li Y. Genetic associations between voltage-gated calcium channels and autism spectrum disorder: a systematic review. Mol Brain. 2020;13:96.

CAS  PubMed  PubMed Central  Google Scholar 

Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, Hofmann F, Klugbauer N. Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. EMBO J. 2003;22:6027–34.

CAS  PubMed  PubMed Central  Google Scholar 

Kushner J, Ferrer X, Marx SO. Roles and regulation of Voltage-gated calcium channels in arrhythmias. J Innov Card Rhythm Manag. 2019;10:3874–80.

PubMed  PubMed Central  Google Scholar 

Kumari N, Gaur H, Bhargava A. Cardiac voltage gated calcium channels and their regulation by beta-adrenergic signaling. Life Sci. 2018;194:139–49.

CAS  PubMed  Google Scholar 

Comments (0)

No login
gif