Abe T, Barber GN. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J Virol. 2014;88:5328–5341.
Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, Hopfner KP, Ludwig J, Hornung V. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013;498:380–384.
Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell. 2000;103:667–78.
Article CAS PubMed Google Scholar
Bai Y, Zhan X, Zhu Q, Ji X, Lu Y, Gao Y, Li F, Guan Z, Zhou H, Rao Z. ATG16L1 restrains macrophage NLRP3 activation and alveolar epithelial cell injury during septic lung injury. Clin Transl Med. 2025;15: e70289.
Article CAS PubMed PubMed Central Google Scholar
Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011;478:515–8.
Article CAS PubMed PubMed Central Google Scholar
Canesso M, Lemos L, Neves TC, Marim FM, Castro T, Veloso ÉS, Queiroz CP, Ahn J, Santiago HC, Martins FS, Alves-Silva J, Ferreira E, Cara DC, Vieira AT, Barber GN, Oliveira SC, Faria A. The cytosolic sensor STING is required for intestinal homeostasis and control of inflammation. Mucosal Immunol. 2018;11:820–34.
Article CAS PubMed Google Scholar
Cao Y, Chen X, Zhu Z, et al. STING contributes to lipopolysaccharide-induced tubular cell inflammation and pyroptosis by activating endoplasmic reticulum stress in acute kidney injury. Cell Death Dis. 2024;15(3):217.
Article CAS PubMed PubMed Central Google Scholar
Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392:75–87. https://doi.org/10.1016/S0140-6736(18)30696-2.
Chen X, Yu Z, Nong C, Xue R, Zhang M, Zhang Y, Sun L, Zhang L, Wang X. Activation of cDCs and iNKT cells contributes to triptolide-induced hepatotoxicity via STING signaling pathway and endoplasmic reticulum stress. Cell Biol Toxicol. 2023a;39:1753–72.
Article CAS PubMed Google Scholar
Chen Y, Bian H, Lv J, et al. Gelsevirine is a novel STING-specific inhibitor and mitigates STING-related inflammation in sepsis. Front Immunol. 2023b;14:1190707.
Article CAS PubMed PubMed Central Google Scholar
Cheng Z, Dai T, He X, Zhang Z, Xie F, Wang S, Zhang L, Zhou F. The interactions between cGAS-STING pathway and pathogens. Signal Transduct Target Ther. 2020;5:91.
Choe CH, Park IS, Park J, Yu KY, Jang H, Kim J, Jang YS. Transmembrane protein 173 inhibits RANKL-induced osteoclast differentiation. FEBS Lett. 2015;589:836–41.
Article CAS PubMed Google Scholar
Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, Hornung V, Hopfner KP. Structural mechanism of cytosolic DNA sensing by cGAS. Nature. 2013;498:332–7.
Article CAS PubMed PubMed Central Google Scholar
Dong Y, et al. Non-Canonical STING-PERK pathway modulation of cellular senescence and therapeutic response in sepsis-associated acute kidney injury. Inflammation. 2025;48:696–712.
Fink MP, Warren HS. Strategies to improve drug development for sepsis. Nat Rev Drug Discov. 2014;13:741–58. https://doi.org/10.1038/nrd4368.
Article CAS PubMed Google Scholar
Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003;4:491–6.
Article CAS PubMed Google Scholar
Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016;193:259–72. https://doi.org/10.1164/rccm.201504-0781OC.
Article CAS PubMed Google Scholar
Gall A, Treuting P, Elkon KB, Loo YM, Gale M Jr, Barber GN, Stetson DB. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity. 2012;36:120–31.
Article CAS PubMed PubMed Central Google Scholar
Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, Serganov AA, Liu Y, Jones RA, Hartmann G, Tuschl T, Patel DJ. Cyclic [G(2’,5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. 2013;153:1094–107.
Article CAS PubMed PubMed Central Google Scholar
Ge W, Hu Q, Fang X, et al. LDK378 improves micro- and macro-circulation via alleviating STING-mediated inflammatory injury in a Sepsis rat model induced by Cecal ligation and puncture. J Inflamm (Lond). 2019;16:3.
Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol. 2012;8:557–66. https://doi.org/10.1038/nrneurol.2012.183.
Article CAS PubMed Google Scholar
Gong LK, Yang X, Yang J, Wu S, Chen Y, Zhang JT, Wang ZH, Chen LH, Xing C, Liu T. Low-dose ganciclovir ameliorates dextran sulfate sodium-induced ulcerative colitis through inhibiting macrophage STING activation in mice. Front Pharmacol. 2022;13:1020670.
Article CAS PubMed PubMed Central Google Scholar
Gonugunta VK, Sakai T, Pokatayev V, Yang K, Wu J, Dobbs N, Yan N. Trafficking-Mediated STING Degradation Requires Sorting to Acidified Endolysosomes and Can Be Targeted to Enhance Anti-tumor Response. Cell Rep. 2017;21:3234–42.
Article CAS PubMed PubMed Central Google Scholar
Gu L, Wang F, Wang Y, Sun D, Sun Y, Tian T, Meng Q, Yin L, Xu L, Lu X, Peng J, Lin Y, Sun P. Naringin protects against inflammation and apoptosis induced by intestinal ischemia-reperfusion injury through deactivation of cGAS-STING signaling pathway. Phytother Res. 2023;37:3495–507.
Article CAS PubMed Google Scholar
He YQ, Zhou CC, Deng JL, Wang L, Chen WS. Tanreqing Inhibits LPS-Induced Acute Lung Injury In Vivo and In Vitro Through Downregulating STING Signaling Pathway. Front Pharmacol. 2021;12: 746964.
Article CAS PubMed PubMed Central Google Scholar
He YQ, Deng JL, Zhou CC, et al. Ursodeoxycholic acid alleviates sepsis-induced lung injury by blocking PANoptosis via STING pathway. Int Immunopharmacol. 2023;125(Pt B): 111161.
Article CAS PubMed Google Scholar
Heipertz EL, Harper J, Walker WE. STING and TRIF Contribute to Mouse Sepsis, Depending on Severity of the Disease Model. Shock. 2017;47:621–31.
Article CAS PubMed Google Scholar
Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol. 2021;18:424–34. https://doi.org/10.1038/s41569-020-00492-2.
Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21:501–21.
Article CAS PubMed Google Scholar
Hu Q, Knight PH, Ren Y, Ren H, Zheng J, Wu X, Ren J, Sawyer RG. The emerging role of stimulator of interferons genes signaling in sepsis: Inflammation, autophagy, and cell death. Acta Physiol (Oxf). 2019a;225: e13194.
Hu Q, Ren H, Li G, Wang D, Zhou Q, Wu J, Zheng J, Huang J, Slade DA, Wu X, Ren J. STING-mediated intestinal barrier dysfunction contributes to lethal sepsis. EBioMedicine. 2019b;41:497–508.
Article PubMed PubMed Central Google Scholar
Hu X, Zhang H, Zhang Q, Yao X, Ni W, Zhou K. Emerging role of STING signalling in CNS injury: inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. J Neuroinflammation. 2022;19(1):242. https://doi.org/10.1186/s12974-022-02602-y.
Article CAS PubMed PubMed Central Google Scholar
Hui S, Kan W, Qin S, He P, Zhao J, Li H, Bai J, Wen J, Mou W, Hou M, Wei Z, Lin L, Xiao X, Xu G, Bai Z. Glycyrrhiza uralensis polysaccharides ameliorates cecal ligation and puncture-induced sepsis by inhibiting the cGAS-STING signaling pathway. Front Pharmacol. 2024;151:374179. https://doi.org/10.3389/fphar.2024.1374179.
Comments (0)