Item does not exist

FTO (fat-mass and obesity-associated protein) deficiency aggravates age-dependent depression-like behaviors and cognitive impairment

Afridi MI, Hina M, Qureshi IS, Hussain M. Cognitive disturbance comparison among drug-naive depressed cases and healthy controls. J Coll Physicians Surg Pak. 2011;21(6):351–5.

PubMed  Google Scholar 

Story TJ, Potter GG, Attix DK, Welsh-Bohmer KA, Steffens DC. Neurocognitive correlates of response to treatment in late-life depression. Am J Geriatr Psychiatry. 2008;16(9):752–9. https://doi.org/10.1097/JGP.0b013e31817e739a.

Article  PubMed  PubMed Central  Google Scholar 

Rock PL, Roiser JP, Riedel WJ, Blackwell AD. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med. 2014;44(10):2029–40. https://doi.org/10.1017/S0033291713002535.

Article  CAS  PubMed  Google Scholar 

Malhi GS, Mann JJ. Depression. Lancet. 2018;392(10161):2299–312. https://doi.org/10.1016/S0140-6736(18)31948-2.

Article  PubMed  Google Scholar 

Bhalla RK, Butters MA, Mulsant BH, Begley AE, Zmuda MD, Schoderbek B, Pollock BG, Reynolds CF 3rd, Becker JT. Persistence of neuropsychologic deficits in the remitted state of late-life depression. Am J Geriatr Psychiatry. 2006;14(5):419–27. https://doi.org/10.1097/01.JGP.0000203130.45421.69.

Article  PubMed  Google Scholar 

Mukku SSR, Dahale AB, Muniswamy NR, Muliyala KP, Sivakumar PT, Varghese M. Geriatric depression and cognitive impairment-an update. Indian J Psychol Med. 2021;43(4):286–93. https://doi.org/10.1177/0253717620981556.

Article  PubMed  PubMed Central  Google Scholar 

Fan X, Wheatley EG, Villeda SA. Mechanisms of hippocampal aging and the potential for rejuvenation. Annu Rev Neurosci. 2017;40:251–72. https://doi.org/10.1146/annurev-neuro-072116-031357.

Article  CAS  PubMed  Google Scholar 

Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci. 2005;6(8):603–14. https://doi.org/10.1038/nrn1726.

Article  CAS  PubMed  Google Scholar 

Ghosh A, Carnahan J, Greenberg ME. Requirement for BDNF in activity-dependent survival of cortical neurons. Science. 1994;263(5153):1618–23. https://doi.org/10.1126/science.7907431.

Article  CAS  PubMed  Google Scholar 

Mondal AC, Fatima M. Direct and indirect evidences of BDNF and NGF as key modulators in depression: role of antidepressants treatment. Int J Neurosci. 2019;129(3):283–96. https://doi.org/10.1080/00207454.2018.1527328.

Article  CAS  PubMed  Google Scholar 

Martinez-Pinteno A, Mezquida G, Bioque M, Lopez-Ilundain JM, Andreu-Bernabeu A, Zorrilla I, Mane A, Rodriguez-Jimenez R, Corripio I, Sarro S, et al. The role of BDNF and NGF plasma levels in first-episode schizophrenia: a longitudinal study. Eur Neuropsychopharmacol. 2022;57:105–17. https://doi.org/10.1016/j.euroneuro.2022.02.003.

Article  CAS  PubMed  Google Scholar 

Loch AA, Pinto MTC, Andrade JC, de Jesus LP, de Medeiros MW, Haddad NM, Bilt MTV, Talib LL, Gattaz WF. Plasma levels of neurotrophin 4/5, NGF and pro-BDNF influence transition to mental disorders in a sample of individuals at ultra-high risk for psychosis. Psychiatry Res. 2023;327:115402. https://doi.org/10.1016/j.psychres.2023.115402.

Article  CAS  PubMed  Google Scholar 

Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ. Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci U S A. 1998;95(6):3221–6. https://doi.org/10.1073/pnas.95.6.3221.

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci. 1997;17(1):23–31. https://doi.org/10.1523/JNEUROSCI.17-01-00023.1997.

Article  PubMed  PubMed Central  Google Scholar 

Fournier NM, Andersen DR, Botterill JJ, Sterner EY, Lussier AL, Caruncho HJ, Kalynchuk LE. The effect of amygdala kindling on hippocampal neurogenesis coincides with decreased reelin and DISC1 expression in the adult dentate gyrus. Hippocampus. 2010;20(5):659–71. https://doi.org/10.1002/hipo.20653.

Article  CAS  PubMed  Google Scholar 

Ibi D, Nakasai G, Sawahata M, Takaba R, Kinoshita M, Yamada K, Hiramatsu M. Emotional behaviors as well as the hippocampal reelin expression in C57BL/6N male mice chronically treated with corticosterone. Pharmacol Biochem Behav. 2023;230:173617. https://doi.org/10.1016/j.pbb.2023.173617.

Article  CAS  PubMed  Google Scholar 

Cui X, Meng J, Zhang S, Rao MK, Chen Y, Huang Y. A hierarchical model for clustering m(6)A methylation peaks in MeRIP-seq data. BMC Genomics. 2016;17(Suppl 7):520. https://doi.org/10.1186/s12864-016-2913-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149(7):1635–46. https://doi.org/10.1016/j.cell.2012.05.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shafik AM, Zhang F, Guo Z, Dai Q, Pajdzik K, Li Y, Kang Y, Yao B, Wu H, He C, et al. N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer’s disease. Genome Biol. 2021;22(1):17. https://doi.org/10.1186/s13059-020-02249-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wen Y, Fu Z, Li J, Liu M, Wang X, Chen J, Chen Y, Wang H, Wen S, Zhang K, et al. Targeting m(6)A mRNA demethylase FTO alleviates manganese-induced cognitive memory deficits in mice. J Hazard Mater. 2024;476:134969. https://doi.org/10.1016/j.jhazmat.2024.134969.

Article  CAS  PubMed  Google Scholar 

Yu J, Chen M, Huang H, Zhu J, Song H, Zhu J, Park J, Ji SJ. Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res. 2018;46(3):1412–23. https://doi.org/10.1093/nar/gkx1182.

Article  CAS  PubMed  Google Scholar 

Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Bronneke HS, Dietrich MO, Jordan SD, Saletore Y, Elemento O, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci. 2013;16(8):1042–8. https://doi.org/10.1038/nn.3449.

Article  CAS  PubMed  Google Scholar 

Mitsuhashi H, Nagy C. Potential roles of m6A and FTO in synaptic connectivity and major depressive disorder. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24076220.

Article  PubMed  PubMed Central  Google Scholar 

Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic regulation by m(6)A RNA methylation in brain development and diseases. J Cereb Blood Flow Metab. 2020;40(12):2331–49. https://doi.org/10.1177/0271678X20960033.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao X, Shin YH, Li M, Wang F, Tong Q, Zhang P. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS ONE. 2010;5(11):e14005. https://doi.org/10.1371/journal.pone.0014005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS, Meyre D, Golzio C, Molinari F, Kadhom N, et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet. 2009;85(1):106–11. https://doi.org/10.1016/j.ajhg.2009.06.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patterson GH, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 2002;297(5588):1873–7. https://doi.org/10.1126/science.1074952.

Comments (0)

No login
gif