Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.
Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG, Williams SG. Prostate cancer. Lancet. 2021;398:1075–90.
Article PubMed CAS Google Scholar
Sartor O, de Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med. 2021;385:1091–103.
Article PubMed PubMed Central CAS Google Scholar
Kratochwil C, Fendler WP, Eiber M, Hofman MS, Emmett L, Calais J, et al. Joint EANM/SNMMI procedure guideline for the use of 177Lu-labeled PSMA-targeted radioligand-therapy (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2023;50:2830–45.
Article PubMed PubMed Central CAS Google Scholar
Hartrampf PE, Hüttmann T, Seitz AK, Kübler H, Serfling SE, Schlötelburg W, et al. SUVmean on baseline [18F]PSMA-1007 PET and clinical parameters are associated with survival in prostate cancer patients scheduled for [177Lu]Lu-PSMA I&T. Eur J Nucl Med Mol Imaging. 2023;50:3465–74.
Article PubMed PubMed Central CAS Google Scholar
Seifert R, Kessel K, Schlack K, Weber M, Herrmann K, Spanke M, et al. PSMA PET total tumor volume predicts outcome of patients with advanced prostate cancer receiving [177Lu]Lu-PSMA-617 radioligand therapy in a bicentric analysis. Eur J Nucl Med Mol Imaging. 2021;48:1200–10.
Article PubMed CAS Google Scholar
Rahbar Nikoukar L, Seifert R, Ventura D, Schindler P, Bögemann M, Rahbar K, et al. Prognostic value of pretherapeutic 68Ga-PSMA-11-PET based imaging parameters in mCRPC patients treated with PSMA radioligands. Nuklearmedizin. 2024.
Kuo P, Hesterman J, Rahbar K, Kendi AT, Wei XX, Fang B, et al. [68 Ga]Ga-PSMA-11 PET baseline imaging as a prognostic tool for clinical outcomes to [177 Lu]Lu-PSMA-617 in patients with mCRPC: A VISION substudy. J Clin Oncol. 2022;40:5002–5002.
Ke ZB, You Q, Xue YT, Sun JB, Chen JY, Liu WQ, et al. Body composition parameters were associated with response to abiraterone acetate and prognosis in patients with metastatic castration-resistant prostate cancer. Cancer Med. 2023;12:8251–66.
Article PubMed PubMed Central CAS Google Scholar
Bauckneht M, Lai R, D’Amico F, Miceli A, Donegani MI, Campi C, et al. Opportunistic skeletal muscle metrics as prognostic tools in metastatic castration-resistant prostate cancer patients candidates to receive Radium-223. Ann Nucl Med. 2022;36:373–83.
Article PubMed PubMed Central CAS Google Scholar
Antoun S, Bayar A, Ileana E, Laplanche A, Fizazi K, Di Palma M, et al. High subcutaneous adipose tissue predicts the prognosis in metastatic castration-resistant prostate cancer patients in post chemotherapy setting. Eur J Cancer. 2015;51:2570–7.
Hartrampf PE, Mihatsch PW, Seitz AK, Solnes LB, Rowe SP, Pomper MG, et al. Elevated body mass index is associated with improved overall survival in castration-resistant prostate cancer patients undergoing prostate-specific membrane antigen-directed radioligand therapy. J Nucl Med. 2023;64:1272–8.
Article PubMed CAS Google Scholar
Keyl J, Bucher A, Jungmann F, Hosch R, Ziller A, Armbruster R, et al. Prognostic value of deep learning-derived body composition in advanced pancreatic cancer-a retrospective multicenter study. ESMO Open. 2024;9:102219.
Article PubMed PubMed Central CAS Google Scholar
Keyl J, Hosch R, Berger A, Ester O, Greiner T, Bogner S, et al. Deep learning-based assessment of body composition and liver tumour burden for survival modelling in advanced colorectal cancer. J Cachexia Sarcopenia Muscle. 2023;14:545–52.
Ying T, Borrelli P, Edenbrandt L, Enqvist O, Kaboteh R, Trägårdh E, et al. AI-based fully automatic image analysis: Optimal abdominal and thoracic segmentation volumes for estimating total muscle volume on computed tomography scans. Osteoporos Sarcopenia. 2024;10:78–83.
Article PubMed PubMed Central Google Scholar
Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18:203–11.
Article PubMed CAS Google Scholar
Wasserthal J, Breit HC, Meyer MT, Pradella M, Hinck D, Sauter AW, et al. TotalSegmentator: Robust segmentation of 104 Anatomic Structures in CT Images. Radiol Artif Intell. 2023;5:e230024.
Article PubMed PubMed Central Google Scholar
Haubold J, Baldini G, Parmar V, Schaarschmidt BM, Koitka S, Kroll L, et al. BOA: A CT-based body and organ analysis for radiologists at the point of care. Invest Radiol. 2024;59:433–41.
Article PubMed CAS Google Scholar
Davidson-Pilon C. Lifelines: survival analysis in Python. J Open Source Softw. 2019;4:1317.
Seabold S, Perktold J. Statsmodels: Econometric and statistical modeling with python. P SciPy. 2010;7:92–6.
Chiang PK, Tsai WK, Chiu AWH, Lin JB, Yang FY, Lee J. Muscle loss during androgen deprivation therapy is associated with higher risk of non-cancer mortality in high-risk prostate cancer. Front Oncol. 2021;11:722652.
Article PubMed PubMed Central Google Scholar
Chen PC, Chiang PK, Lin JB, Tsai WK, Lin WC, Jan YT, et al. Thresholds of body composition changes associated with survival during androgen deprivation therapy in prostate cancer. Eur Urol Open Sci. 2024;70:99–108.
Article PubMed PubMed Central Google Scholar
Cushen SJ, Power DG, Murphy KP, McDermott R, Griffin BT, Lim M, et al. Impact of body composition parameters on clinical outcomes in patients with metastatic castrate-resistant prostate cancer treated with docetaxel. Clin Nutr ESPEN. 2016;13:e39-45.
Schaudinn A, Linder N, Garnov N, Kerlikowsky F, Blüher M, Dietrich A, et al. Predictive accuracy of single-and multi-slice MRI for the estimation of total visceral adipose tissue in overweight to severely obese patients. NMR Biomed. 2015;28:583–90.
Jung M, Raghu VK, Reisert M, Rieder H, Rospleszcz S, Pischon T, et al. Deep learning-based body composition analysis from whole-body magnetic resonance imaging to predict all-cause mortality in a large western population. EBioMedicine. 2024;110:105467.
Article PubMed PubMed Central Google Scholar
Decazes P, Ammari S, De Prévia A, Mottay L, Lawrance L, Belkouchi Y, et al. Body composition to define prognosis of cancers treated by anti-angiogenic drugs. Diagnostics. 2023;13:205.
Article PubMed PubMed Central CAS Google Scholar
Rämö JT, Kany S, Hou CR, Friedman SF, Roselli C, Nauffal V, et al. Cardiovascular significance and genetics of epicardial and pericardial adiposity. JAMA Cardiol. 2024;9:418–27.
Article PubMed PubMed Central Google Scholar
Lopez P, Newton RU, Taaffe DR, Singh F, Buffart LM, Spry N, et al. Associations of fat and muscle mass with overall survival in men with prostate cancer: a systematic review with meta-analysis. Prostate Cancer Prostat Dis. 2021;25:615–26.
Lim JP, Chong MS, Tay L, Yang YX, Leung BP, Yeo A, et al. Inter-muscular adipose tissue is associated with adipose tissue inflammation and poorer functional performance in central adiposity. Arch Gerontol Geriatr. 2019;81:1–7.
Article PubMed CAS Google Scholar
Visser M, Study for the HA, Goodpaster BH, Study for the HA, Kritchevsky SB, Study for the HA, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol Series A. 2005;60:324–33.
Seifert R, Herrmann K, Kleesiek J, Schäfers M, Shah V, Xu Z, et al. Semiautomatically quantified tumor volume using 68Ga-PSMA-11 PET as a biomarker for survival in patients with advanced prostate cancer. J Nucl Med. 2020;61:1786–92.
Article PubMed CAS Google Scholar
Kuo PH, Morris MJ, Hesterman J, Kendi AT, Rahbar K, Wei XX, et al. Quantitative 68Ga-PSMA-11 PET and clinical outcomes in metastatic castration-resistant prostate cancer following 177Lu-PSMA-617 (VISION trial). Radiology. 2024;312:e233460.
Herrmann K, Gafita A, de Bono JS, Sartor O, Chi KN, Krause BJ, et al. Multivariable models of outcomes with [177Lu] Lu-PSMA-617: analysis of the phase 3 VISION trial. EClinicalMedicine. 2024;77:102862.
Comments (0)