Reynolds L, Luo Z, Singh K (2023) Diabetic complications and prospective immunotherapy. Front Immunol 14:1219598. https://doi.org/10.3389/fimmu.2023.1219598
Article CAS PubMed PubMed Central Google Scholar
Luo Z, Fabre G, Rodwin VG (2020) Meeting the challenge of diabetes in China. Int J Health Policy Manag 9(2):47–52. https://doi.org/10.15171/ijhpm.2019.80
Dehdashtian E, Mehrzadi S, Yousefi B et al (2018) Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci 193:20–33. https://doi.org/10.1016/j.lfs.2017.12.001
Article CAS PubMed Google Scholar
Oshitari T (2023) Neurovascular cell death and therapeutic strategies for diabetic retinopathy. Int J Mol Sci 24(16):12919. https://doi.org/10.3390/ijms241612919
Article CAS PubMed PubMed Central Google Scholar
Carpi-Santos R, de Melo Reis RA, Gomes FCA, Calaza KC (2022) Contribution of Müller cells in the diabetic retinopathy development: focus on oxidative stress and inflammation. Antioxid (Basel) 11(4):617. https://doi.org/10.3390/antiox11040617
Miller WP, Toro AL, Sunilkumar S et al (2022) Müller glial expression of REDD1 is required for retinal neurodegeneration and visual dysfunction in diabetic mice. Diabetes 71(5):1051–1062. https://doi.org/10.2337/db21-0853
Article CAS PubMed PubMed Central Google Scholar
Ghaseminejad F, Kaplan L, Pfaller AM, Hauck SM, Grosche A (2020) The role of Müller cell glucocorticoid signaling in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 258(2):221–230. https://doi.org/10.1007/s00417-019-04521-w
Chen Y, Zhang T, Zeng S et al (2022) Transketolase in human Müller cells is critical to resist light stress through the Pentose phosphate and NRF2 pathways. Redox Biol 54:102379. https://doi.org/10.1016/j.redox.2022.102379
Article CAS PubMed PubMed Central Google Scholar
Zeng K, Xu H, Mi M et al (2010) Effects of taurine on glial cells apoptosis and taurine transporter expression in retina under diabetic conditions. Neurochem Res 35(10):1566–1574. https://doi.org/10.1007/s11064-010-0216-1
Article CAS PubMed Google Scholar
Zeng K, Wang Y, Huang L et al (2022) Resveratrol inhibits neural apoptosis and regulates RAX/P-PKR expression in retina of diabetic rats. Nutr Neurosci 25(12):2560–2569. https://doi.org/10.1080/1028415X.2021.1990462
Article CAS PubMed Google Scholar
Zeng K, Yang N, Wang D et al (2016) Resveratrol prevents retinal dysfunction by regulating glutamate transporters, glutamine synthetase expression and activity in diabetic retina. Neurochem Res 41(5):1050–1064. https://doi.org/10.1007/s11064-015-1793-9
Article CAS PubMed Google Scholar
Lopes de Faria JM, Duarte DA, Montemurro C, Papadimitriou A, Consonni SR, de Lopes JB (2016) Defective autophagy in diabetic retinopathy. Invest Ophthalmol Vis Sci 57(10):4356–4366. https://doi.org/10.1167/iovs.16-19197
Article CAS PubMed Google Scholar
Ye S, Zhang Y, Wang X et al (2021) Autophagy positively regulates Wnt signaling in mice with diabetic retinopathy. Exp Ther Med 22(4):1164. https://doi.org/10.3892/etm.2021.10598
Article CAS PubMed PubMed Central Google Scholar
Luo Y, Dong X, Lu S, Gao Y, Sun G, Sun X (2021) Gypenoside XVII alleviates early diabetic retinopathy by regulating Müller cell apoptosis and autophagy in db/db mice. Eur J Pharmacol 895:173893. https://doi.org/10.1016/j.ejphar.2021.173893
Article CAS PubMed Google Scholar
Zhou P, Xie W, Meng X et al (2019) Notoginsenoside R1 ameliorates diabetic retinopathy through PINK1-Dependent activation of mitophagy. Cells 8(3):213. https://doi.org/10.3390/cells8030213
Article CAS PubMed PubMed Central Google Scholar
Qin M, Xie Z, Cao T et al (2022) Autophagy in rat Müller glial cells is modulated by the Sirtuin 4/ampk/mtor pathway and induces apoptosis under oxidative stress. Cells 11(17):2645. https://doi.org/10.3390/cells11172645
Article CAS PubMed PubMed Central Google Scholar
Mecchia A, Palumbo C, De Luca A et al (2022) High glucose induces an early and transient cytoprotective autophagy in retinal Müller cells. Endocrine 77(2):221–230. https://doi.org/10.1007/s12020-022-03079-8
Article CAS PubMed PubMed Central Google Scholar
Piras A, Gianetto D, Conte D, Bosone A, Vercelli A (2011) Activation of autophagy in a rat model of retinal ischemia following high intraocular pressure. PLoS ONE 6(7):e22514. https://doi.org/10.1371/journal.pone.0022514
Article CAS PubMed PubMed Central Google Scholar
Huang C, Lu H, Xu J, Yu H, Wang X, Zhang X (2018) Protective roles of autophagy in retinal pigment epithelium under high glucose condition via regulating PINK1/Parkin pathway and BNIP3L. Biol Res 51(1):22. https://doi.org/10.1186/s40659-018-0169-4
Article CAS PubMed PubMed Central Google Scholar
Peng H, Han W, Ma B et al (2023) Autophagy and senescence of rat retinal precursor cells under high glucose. Front Endocrinol (Lausanne) 13:1047642. https://doi.org/10.3389/fendo.2022.1047642
Lin W, Xu G (2019) Autophagy: A role in the apoptosis, survival, inflammation, and development of the retina. Ophthalmic Res 61(2):65–72. https://doi.org/10.1159/000487486
Blasiak J, Pawlowska E, Chojnacki J, Szczepanska J, Chojnacki C, Kaarniranta K (2020) Zinc and autophagy in Age-Related macular degeneration. Int J Mol Sci 21(14):4994. https://doi.org/10.3390/ijms21144994
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Yang Y, Yu H, Li M, Hang L, Xu X (2020) Apigenin protects mouse retina against oxidative damage by regulating the Nrf2 pathway and autophagy. Oxid Med Cell Longev 2020:9420704. https://doi.org/10.1155/2020/9420704
Xu JX, Yang Y, Zhang X, Luan XP (2021) Micro-RNA29b enhances the sensitivity of glioblastoma multiforme cells to Temozolomide by promoting autophagy. Anat Rec (Hoboken) 304(2):342–352. https://doi.org/10.1002/ar.24400
Article CAS PubMed Google Scholar
Zeng K, Wang Y, Yang N et al (2017) Resveratrol inhibits diabetic-induced Müller cells apoptosis through MicroRNA-29b/Specificity protein 1 pathway. Mol Neurobiol 54(6):4000–4014. https://doi.org/10.1007/s12035-016-9972-5
Article CAS PubMed Google Scholar
Pai Bellare G, Sankar Patro B (2022) Resveratrol sensitizes breast cancer to PARP inhibitor, Talazoparib through dual Inhibition of AKT and autophagy flux. Biochem Pharmacol 199:115024. https://doi.org/10.1016/j.bcp.2022.115024
Article CAS PubMed Google Scholar
Jing Y, Hu T, Yuan J et al (2023) Resveratrol protects against postmenopausal atherosclerosis progression through reducing PCSK9 expression via the regulation of the ERα-mediated signaling pathway. Biochem Pharmacol 211:115541. https://doi.org/10.1016/j.bcp.2023.115541
Article CAS PubMed Google Scholar
Yao Y, Zhu J, Qin S et al (2022) Resveratrol induces autophagy impeding BAFF-stimulated B-cell proliferation and survival by inhibiting the akt/mtor pathway. Biochem Pharmacol 202:115139. https://doi.org/10.1016/j.bcp.2022.115139
Comments (0)