Resveratrol ameliorates early retinal neurodegeneration in diabetic retinopathy via microRNA-29b/specificity protein 1/apoptosis pathway by enhancing autophagy

Reynolds L, Luo Z, Singh K (2023) Diabetic complications and prospective immunotherapy. Front Immunol 14:1219598. https://doi.org/10.3389/fimmu.2023.1219598

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo Z, Fabre G, Rodwin VG (2020) Meeting the challenge of diabetes in China. Int J Health Policy Manag 9(2):47–52. https://doi.org/10.15171/ijhpm.2019.80

Article  PubMed  Google Scholar 

Dehdashtian E, Mehrzadi S, Yousefi B et al (2018) Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci 193:20–33. https://doi.org/10.1016/j.lfs.2017.12.001

Article  CAS  PubMed  Google Scholar 

Oshitari T (2023) Neurovascular cell death and therapeutic strategies for diabetic retinopathy. Int J Mol Sci 24(16):12919. https://doi.org/10.3390/ijms241612919

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carpi-Santos R, de Melo Reis RA, Gomes FCA, Calaza KC (2022) Contribution of Müller cells in the diabetic retinopathy development: focus on oxidative stress and inflammation. Antioxid (Basel) 11(4):617. https://doi.org/10.3390/antiox11040617

Article  CAS  Google Scholar 

Miller WP, Toro AL, Sunilkumar S et al (2022) Müller glial expression of REDD1 is required for retinal neurodegeneration and visual dysfunction in diabetic mice. Diabetes 71(5):1051–1062. https://doi.org/10.2337/db21-0853

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghaseminejad F, Kaplan L, Pfaller AM, Hauck SM, Grosche A (2020) The role of Müller cell glucocorticoid signaling in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 258(2):221–230. https://doi.org/10.1007/s00417-019-04521-w

Article  PubMed  Google Scholar 

Chen Y, Zhang T, Zeng S et al (2022) Transketolase in human Müller cells is critical to resist light stress through the Pentose phosphate and NRF2 pathways. Redox Biol 54:102379. https://doi.org/10.1016/j.redox.2022.102379

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng K, Xu H, Mi M et al (2010) Effects of taurine on glial cells apoptosis and taurine transporter expression in retina under diabetic conditions. Neurochem Res 35(10):1566–1574. https://doi.org/10.1007/s11064-010-0216-1

Article  CAS  PubMed  Google Scholar 

Zeng K, Wang Y, Huang L et al (2022) Resveratrol inhibits neural apoptosis and regulates RAX/P-PKR expression in retina of diabetic rats. Nutr Neurosci 25(12):2560–2569. https://doi.org/10.1080/1028415X.2021.1990462

Article  CAS  PubMed  Google Scholar 

Zeng K, Yang N, Wang D et al (2016) Resveratrol prevents retinal dysfunction by regulating glutamate transporters, glutamine synthetase expression and activity in diabetic retina. Neurochem Res 41(5):1050–1064. https://doi.org/10.1007/s11064-015-1793-9

Article  CAS  PubMed  Google Scholar 

Lopes de Faria JM, Duarte DA, Montemurro C, Papadimitriou A, Consonni SR, de Lopes JB (2016) Defective autophagy in diabetic retinopathy. Invest Ophthalmol Vis Sci 57(10):4356–4366. https://doi.org/10.1167/iovs.16-19197

Article  CAS  PubMed  Google Scholar 

Ye S, Zhang Y, Wang X et al (2021) Autophagy positively regulates Wnt signaling in mice with diabetic retinopathy. Exp Ther Med 22(4):1164. https://doi.org/10.3892/etm.2021.10598

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo Y, Dong X, Lu S, Gao Y, Sun G, Sun X (2021) Gypenoside XVII alleviates early diabetic retinopathy by regulating Müller cell apoptosis and autophagy in db/db mice. Eur J Pharmacol 895:173893. https://doi.org/10.1016/j.ejphar.2021.173893

Article  CAS  PubMed  Google Scholar 

Zhou P, Xie W, Meng X et al (2019) Notoginsenoside R1 ameliorates diabetic retinopathy through PINK1-Dependent activation of mitophagy. Cells 8(3):213. https://doi.org/10.3390/cells8030213

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin M, Xie Z, Cao T et al (2022) Autophagy in rat Müller glial cells is modulated by the Sirtuin 4/ampk/mtor pathway and induces apoptosis under oxidative stress. Cells 11(17):2645. https://doi.org/10.3390/cells11172645

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mecchia A, Palumbo C, De Luca A et al (2022) High glucose induces an early and transient cytoprotective autophagy in retinal Müller cells. Endocrine 77(2):221–230. https://doi.org/10.1007/s12020-022-03079-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piras A, Gianetto D, Conte D, Bosone A, Vercelli A (2011) Activation of autophagy in a rat model of retinal ischemia following high intraocular pressure. PLoS ONE 6(7):e22514. https://doi.org/10.1371/journal.pone.0022514

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang C, Lu H, Xu J, Yu H, Wang X, Zhang X (2018) Protective roles of autophagy in retinal pigment epithelium under high glucose condition via regulating PINK1/Parkin pathway and BNIP3L. Biol Res 51(1):22. https://doi.org/10.1186/s40659-018-0169-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng H, Han W, Ma B et al (2023) Autophagy and senescence of rat retinal precursor cells under high glucose. Front Endocrinol (Lausanne) 13:1047642. https://doi.org/10.3389/fendo.2022.1047642

Article  PubMed  Google Scholar 

Lin W, Xu G (2019) Autophagy: A role in the apoptosis, survival, inflammation, and development of the retina. Ophthalmic Res 61(2):65–72. https://doi.org/10.1159/000487486

Article  PubMed  Google Scholar 

Blasiak J, Pawlowska E, Chojnacki J, Szczepanska J, Chojnacki C, Kaarniranta K (2020) Zinc and autophagy in Age-Related macular degeneration. Int J Mol Sci 21(14):4994. https://doi.org/10.3390/ijms21144994

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Yang Y, Yu H, Li M, Hang L, Xu X (2020) Apigenin protects mouse retina against oxidative damage by regulating the Nrf2 pathway and autophagy. Oxid Med Cell Longev 2020:9420704. https://doi.org/10.1155/2020/9420704

Xu JX, Yang Y, Zhang X, Luan XP (2021) Micro-RNA29b enhances the sensitivity of glioblastoma multiforme cells to Temozolomide by promoting autophagy. Anat Rec (Hoboken) 304(2):342–352. https://doi.org/10.1002/ar.24400

Article  CAS  PubMed  Google Scholar 

Zeng K, Wang Y, Yang N et al (2017) Resveratrol inhibits diabetic-induced Müller cells apoptosis through MicroRNA-29b/Specificity protein 1 pathway. Mol Neurobiol 54(6):4000–4014. https://doi.org/10.1007/s12035-016-9972-5

Article  CAS  PubMed  Google Scholar 

Pai Bellare G, Sankar Patro B (2022) Resveratrol sensitizes breast cancer to PARP inhibitor, Talazoparib through dual Inhibition of AKT and autophagy flux. Biochem Pharmacol 199:115024. https://doi.org/10.1016/j.bcp.2022.115024

Article  CAS  PubMed  Google Scholar 

Jing Y, Hu T, Yuan J et al (2023) Resveratrol protects against postmenopausal atherosclerosis progression through reducing PCSK9 expression via the regulation of the ERα-mediated signaling pathway. Biochem Pharmacol 211:115541. https://doi.org/10.1016/j.bcp.2023.115541

Article  CAS  PubMed  Google Scholar 

Yao Y, Zhu J, Qin S et al (2022) Resveratrol induces autophagy impeding BAFF-stimulated B-cell proliferation and survival by inhibiting the akt/mtor pathway. Biochem Pharmacol 202:115139. https://doi.org/10.1016/j.bcp.2022.115139

Article  CAS  PubMed 

Comments (0)

No login
gif