Goldbrunner R, Minniti G, Preusser M, Jenkinson MD, Sallabanda K, Houdart E, et al. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 2016;17:e383–91.
Fathi AR, Roelcke U, Meningioma. Curr Neurol Neurosci Rep. 2013;13:337.
Jenkinson MD, Weber DC, Haylock BJ, Mallucci CL, Zakaria R, Javadpour M. Atypical meningoma: current management dilemmas and prospective clinical trials. J Neurooncol. 2015;121:1–7.
Article CAS PubMed Google Scholar
Claus EB, Bondy ML, Schildkraut JM, Wiemels JL, Wrensch M, Black PM. Epidemiology of intracranial meningioma. Neurosurgery. 2005;57:1088–95.
Song D, Xu D, Han H, Gao Q, Zhang M, Wang F, et al. Postoperative adjuvant radiotherapy in atypical meningioma patients: A Meta-Analysis study. Front Oncol. 2021;11:787962.
Article CAS PubMed PubMed Central Google Scholar
Song D, Zhang M, Duan C, Wei M, Xu D, An Y, et al. A machine learning-based integrated clinical model for predicting prognosis in atypical meningioma patients. Acta Neurochir (Wien). 2023;165:4191–201.
Wang F, Xu D, Liu Y, Lin Y, Wei Q, Gao Q, et al. Risk factors associated with postoperative recurrence in atypical intracranial meningioma: analysis of 263 cases at a single neurosurgical centre. Acta Neurochir (Wien). 2019;161:2563–70.
Loken EK, Huang RY. Advanced meningioma imaging. Neurosurg Clin N Am. 2023;34:335–45.
Saloner D, Uzelac A, Hetts S, Martin A, Dillon W. Modern meningioma imaging techniques. J Neurooncol. 2010;99:333–40.
Article CAS PubMed PubMed Central Google Scholar
Hou J, Kshettry VR, Selman WR, Bambakidis NC. Peritumoral brain edema in intracranial meningiomas: the emergence of vascular endothelial growth factor-directed therapy. Neurosurg Focus. 2013;35:E2.
Guo Z, Tian Z, Shi F, Xu P, Zhang J, Ling C, et al. Radiomic features of the edema region May contribute to grading meningiomas with peritumoral edema. J Magn Reson Imaging. 2023;58:301–10.
Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69:127–57.
Article PubMed PubMed Central Google Scholar
Jayakumar S, Sounderajah V, Normahani P, Harling L, Markar SR, Ashrafian H, et al. Quality assessment standards in artificial intelligence diagnostic accuracy systematic reviews: a meta-research study. NPJ Digit Med. 2022;5:11.
Article PubMed PubMed Central Google Scholar
Lambin P, Zindler J, Vanneste BG, De Voorde LV, Eekers D, Compter I, et al. Decision support systems for personalized and participative radiation oncology. Adv Drug Deliv Rev. 2017;109:131–53.
Article CAS PubMed Google Scholar
Guerra A, Wang H, Orton MR, Konidari M, Papanikolaou NK, Koh DM, et al. Prediction of extracapsular extension of prostate cancer by MRI radiomic signature: a systematic review. Insights Imaging. 2024;15:217.
Article PubMed PubMed Central Google Scholar
Hsieh HP, Wu DY, Hung KC, Lim SW, Chen TY, Fan-Chiang Y et al. Machine learning for prediction of recurrence in parasagittal and parafalcine meningiomas: combined clinical and MRI texture features. J Pers Med 2022;12.
Zhang Y, Chen JH, Chen TY, Lim SW, Wu TC, Kuo YT, et al. Radiomics approach for prediction of recurrence in skull base meningiomas. Neuroradiology. 2019;61:1355–64.
Article PubMed PubMed Central Google Scholar
Ren L, Chen J, Deng J, Qing X, Cheng H, Wang D, et al. The development of a combined clinico-radiomics model for predicting post-operative recurrence in atypical meningiomas: a multicenter study. J Neurooncol. 2024;166:59–71.
Zhang J, Yao K, Liu P, Liu Z, Han T, Zhao Z, et al. A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: A multicentre study. EBioMedicine. 2020;58:102933.
Article PubMed PubMed Central Google Scholar
Wang C, You L, Zhang X, Zhu Y, Zheng L, Huang W, et al. A radiomics-based study for differentiating parasellar cavernous hemangiomas from meningiomas. Sci Rep. 2022;12:15509.
Article CAS PubMed PubMed Central Google Scholar
Tian Z, Chen C, Zhang Y, Fan Y, Feng R, Xu J. Radiomic analysis of craniopharyngioma and meningioma in the sellar/parasellar area with MR images features and texture features: A feasible study. Contrast Media Mol Imaging. 2020;2020:4837156.
Article PubMed PubMed Central Google Scholar
Zhang Y, Shang L, Chen C, Ma X, Ou X, Wang J, et al. Machine-Learning classifiers in discrimination of lesions located in the anterior skull base. Front Oncol. 2020;10:752.
Article CAS PubMed PubMed Central Google Scholar
Yuan L, Lu J, Shu X, Liang K, Wang C, Chen J et al. The classification of vestibular Schwannoma (VS) and cerebellopontine angle meningioma (CPAM) based on multimodal magnetic resonance imaging analysis. Diagnostics (Basel) 2025;15.
Li M, Fu S, Du J, Han X, Duan C, Ren Y, et al. Preoperative MRI-based radiomic nomogram for distinguishing solitary fibrous tumor from angiomatous meningioma: a multicenter study. Front Oncol. 2024;14:1399270.
Article PubMed PubMed Central Google Scholar
Liang X, Ke X, Hu W, Jiang J, Li S, Xue C, et al. Deep learning radiomic nomogram outperforms the clinical model in distinguishing intracranial solitary fibrous tumors from angiomatous meningiomas and can predict patient prognosis. Eur Radiol. 2025;35:2670–80.
Stadlbauer A, Marhold F, Oberndorfer S, Heinz G, Buchfelder M, Kinfe TM, et al. Radiophysiomics: brain tumors classification by machine learning and physiological MRI data. Cancers (Basel). 2022;14(10):2363.
An C, Park YW, Ahn SS, Han K, Kim H, Lee SK. Radiomics machine learning study with a small sample size: single random training-test set split May lead to unreliable results. PLoS ONE. 2021;16:e256152.
Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the united States in 2014–2018. Neuro Oncol. 2021;23:iii1–105.
Article PubMed PubMed Central Google Scholar
Zhao Z, Xiao D, Nie C, Zhang H, Jiang X, Jecha AR, et al. Development of a nomogram based on preoperative Bi-Parametric MRI and blood indices for the differentiation between Cystic-Solid pituitary adenoma and craniopharyngioma. Front Oncol. 2021;11:709321.
Article PubMed PubMed Central Google Scholar
Chu H, Lin X, He J, Pang P, Fan B, Lei P, et al. Value of MRI radiomics based on enhanced T1WI images in prediction of meningiomas grade. Acad Radiol. 2021;28:687–93.
Duan CF, Li N, Li Y, Liu F, Wang JC, Liu XJ, et al. Comparison of different radiomic models based on enhanced T1-weighted images to predict the meningioma grade. Clin Radiol. 2022;77:e302–7.
Article CAS PubMed Google Scholar
Yang L, Xu P, Zhang Y, Cui N, Wang M, Peng M, et al. A deep learning radiomics model May help to improve the prediction performance of preoperative grading in meningioma. Neuroradiology. 2022;64:1373–82.
Hamerla G, Meyer HJ, Schob S, Ginat DT, Altman A, Lim T, et al. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study. Magn Reson Imaging. 2019;63:244–9.
Chen H, Li S, Zhang Y, Liu L, Lv X, Yi Y, et al. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study. Eur Radiol. 2022;32:7248–59.
Han T, Liu X, Long C, Xu Z, Geng Y, Zhang B, et al. Prediction of meningioma grade by constructing a clinical rad
Comments (0)