Procoagulant effect of phosphatidylserine-exposed blood cells, endothelial cells and extracellular vesicles in patients with aortic stenosis

Trimaille A, Hmadeh S, Matsushita K, Marchandot B, Kauffenstein G, Morel O. Aortic stenosis and the haemostatic system. Cardiovasc Res. 2023;119:1310–23. https://doi.org/10.1093/cvr/cvac192

Article  CAS  PubMed  Google Scholar 

Kaul H, Gutzwiller JP, Schneider K, Dirsch O, Häusermann M. Aortic valve stenosis as a cause of major systemic embolism–a case report. Angiology. 1998;49:231–4. https://doi.org/10.1177/000331979804900310

Article  CAS  PubMed  Google Scholar 

Alajaji W, Hornick JM, Malek E, Klein AL. The characteristics and outcomes of native aortic valve thrombosis: A systematic review. J Am Coll Cardiol. 2021;78. https://doi.org/10.1016/j.jacc.2021.06.023. 811– 24.

Natale F, Aronne L, Credendino M, Siciliano A, Allocca F, Weizs SH, Martone F, di Marco GM, Calabrò P, Tedesco MA, Russo MG, Calabrò R. Which is the correct management of patients with asymptomatic severe calcific aortic stenosis after symptomatic spontaneous calcium cerebral embolism? J Cardiovasc Med. 2011;12:428–9. https://doi.org/10.2459/JCM.0b013e328344bcc7

Article  Google Scholar 

Soodi D, VanWormer JJ, Rezkalla SH. Aspirin in primary prevention of cardiovascular events, clin. Med Res. 2020;18:89–94. https://doi.org/10.3121/cmr.2020.1548

Article  CAS  Google Scholar 

Brouwer J, Nijenhuis VJ, Delewi R, Hermanides RS, Holvoet W, Dubois C, Frambach P, De Bruyne B, van Houwelingen GK, Van Der Heyden J, Toušek P, van der Kley F, Buysschaert I, Schotborgh CE, Ferdinande B, van der Harst P, Roosen J, Peper J, Thielen F, Veenstra L, Chan PYD, Swaans MJ, Rensing B, van T HA, Timmers L, Kelder JC, Stella PR, Baan J. Ten, aspirin with or without clopidogrel after transcatheter Aortic-Valve implantation, N. Engl. J Med. 2020;383:1447–57. https://doi.org/10.1056/NEJMoa2017815

Article  CAS  Google Scholar 

Tognarelli EI, Retamal-Díaz A, Farías MA, Duarte LF, Palomino TF, Ibañez FJ, Riedel CA, Kalergis AM, Bueno SM, González PA. Pharmacological Inhibition of IRE-1 alpha activity in herpes simplex virus type 1 and type 2-Infected dendritic cells enhances T cell activation. Front Immunol. 2021;12:764861. https://doi.org/10.3389/fimmu.2021.764861

Article  CAS  PubMed  Google Scholar 

Cervantes F, Arellano-Rodrigo E, Alvarez-Larrán A. Blood cell activation in myeloproliferative neoplasms. Haematologica. 2009;94:1484–8. https://doi.org/10.3324/haematol.2009.013375

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matte A, Federti E, De Franceschi L. Erythrocyte pyruvate kinase activation in red cell disorders. Curr Opin Hematol. 2023;30. https://doi.org/10.1097/MOH.0000000000000758. 93– 8.

Keating FK, Butenas S, Fung MK, Schneider DJ. Platelet-white blood cell (WBC) interaction, WBC apoptosis, and procoagulant activity in stored red blood cells. Transfusion. 2011;51:1086–95. https://doi.org/10.1111/j.1537-2995.2010.02950.x

Article  PubMed  Google Scholar 

Morel O, Morel N, Freyssinet JM, Toti F. Platelet microparticles and vascular cells interactions: a checkpoint between the haemostatic and thrombotic responses. Platelets. 2008;19:9–23. https://doi.org/10.1080/09537100701817232

Article  CAS  PubMed  Google Scholar 

Vahidkhah K, Cordasco D, Abbasi M, Ge L, Tseng E, Bagchi P, Azadani AN. Flow-Induced damage to blood cells in aortic valve stenosis. Ann Biomed Eng. 2016;44:2724–36. https://doi.org/10.1007/s10439-016-1577-7

Article  PubMed  PubMed Central  Google Scholar 

Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339:161–6. https://doi.org/10.1126/science.1230719

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Bi Y, Yu M, Li T, Tong D, Yang X, Zhang C, Guo L, Wang C, Kou Y, Dong Z, Novakovic VA, Tian Y, Kou J, Shammas MA, Shi J. Phosphatidylserine-exposing blood cells and microparticles induce procoagulant activity in non-valvular atrial fibrillation. Int J Cardiol. 2018;258:138–43. https://doi.org/10.1016/j.ijcard.2018.01.116

Article  PubMed  Google Scholar 

Coté N, Mahmut A, Bosse Y, Couture C, Pagé S, Trahan S, Boulanger MC, Fournier D, Pibarot P, Mathieu P. Inflammation is associated with the remodeling of calcific aortic valve disease. Inflammation. 2013;36:573–81. https://doi.org/10.1007/s10753-012-9579-6

Article  CAS  PubMed  Google Scholar 

Álvarez-Heredia P, Domínguez-Del-Castillo JJ, Reina-Alfonso I, Gutiérrez-González C, Hassouneh F, Batista-Duharte A, Trujillo-Aguilera A, López-Romero R, Muñoz I, Solana R, Pera A. A straightforward Cytometry-Based protocol for the comprehensive analysis of the inflammatory valve infiltrate in aortic stenosis. Int J Mol Sci. 2023;24. https://doi.org/10.3390/ijms24032194

Baratchi S, Zaldivia M, Wallert M, Loseff-Silver J, Al-Aryahi S, Zamani J, Thurgood P, Salim A, Htun NM, Stub D, Vahidi P, Duffy SJ, Walton A, Nguyen TH, Jaworowski A, Khoshmanesh K, Peter K. Transcatheter aortic valve implantation represents an Anti-Inflammatory therapy via reduction of shear Stress-Induced, Piezo-1-Mediated monocyte activation. Circulation. 2020;142:1092–105. https://doi.org/10.1161/CIRCULATIONAHA.120.045536

Article  CAS  PubMed  Google Scholar 

Jhun CS, Newswanger R, Cysyk JP, Ponnaluri S, Good B, Manning KB, Rosenberg G. Dynamics of blood flows in aortic stenosis: mild, moderate, and severe. ASAIO J. 2021;67:666–74. https://doi.org/10.1097/MAT.0000000000001296

Article  PubMed  PubMed Central  Google Scholar 

Wu ZH, Ji CL, Li H, Qiu GX, Gao CJ, Weng XS. Membrane microparticles and diseases. Eur Rev Med Pharmacol Sci. 2013;17:2420–7.

PubMed  Google Scholar 

Noubouossie DF, Henderson MW, Mooberry M, Ilich A, Ellsworth P, Piegore M, Skinner SC, Pawlinski R, Welsby I, Renné T, Hoffman M, Monroe DM, Key NS. Red blood cell microvesicles activate the contact system, leading to factor IX activation via 2 independent pathways. Blood. 2020;135:755–65. https://doi.org/10.1182/blood.2019001643

Article  PubMed  PubMed Central  Google Scholar 

Grover SP, Mackman N, Factor T. An essential mediator of hemostasis and trigger of thrombosis, arterioscler. Thromb Vasc Biol. 2018;38:709–25. https://doi.org/10.1161/ATVBAHA.117.309846

Article  CAS  Google Scholar 

Tan X, Shi J, Fu Y, Gao C, Yang X, Li J, Wang W, Hou J, Li H, Zhou J. Role of erythrocytes and platelets in the hypercoagulable status in polycythemia vera through phosphatidylserine exposure and microparticle generation. Thromb Haemost. 2013;109:1025–32. https://doi.org/10.1160/TH12-11-0811

Article  CAS  PubMed  Google Scholar 

Falk V, Baumgartner H, Bax JJ, De Bonis M, Hamm C, Holm PJ, Iung B, Lancellotti P, Lansac E, Muñoz DR, Rosenhek R, Sjögren J, Tornos MP, Vahanian A, Walther T, Wendler O, Windecker S, Zamorano JL. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur J Cardiothorac Surg. 2017;52. https://doi.org/10.1093/ejcts/ezx324. 616– 64.

Shi J, Heegaard CW, Rasmussen JT, Gilbert GE. Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Biochim Biophys Acta. 2004;1667:82–90. https://doi.org/10.1016/j.bbamem.2004.09.006

Article  CAS  PubMed  Google Scholar 

Chi H, Shao Y, Xie F, Zhang J, Zhang G, Jiang G, Tong D, Li J. Procoagulant effect of extracellular vesicles in patients after transcatheter aortic valve replacement or transcatheter aortic valve replacement with percutaneous coronary intervention. J Thromb Thrombolysis. 2023;56:264–74. https://doi.org/10.1007/s11239-023-02835-5

Article  CAS  PubMed  Google Scholar 

He Z, Zhang Y, Cao M, Ma R, Meng H, Yao Z, Zhao L, Liu Y, Wu X, Deng R, Dong Z, Bi Y, Kou J, Novakovic V, Shi J, Hao L. Increased phosphatidylserine-exposing microparticles and their originating cells are associated with the coagulation process in patients with IgA nephropathy. Nephrol Dial Transpl. 2016;31. https://doi.org/10.1093/ndt/gfv403. 747– 59.

Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambayashi J. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis. 2001;158:277–87. https://doi.org/10.1016/s0021-9150(01)00433-6

Article  CAS  PubMed  Google Scholar 

Diehl P, Nagy F, Sossong V, Helbing T, Beyersdorf F, Olschewski M, Bode C, Moser M. Increased levels of Circulating microparticles in patients with severe aortic valve stenosis. Thromb Haemost. 2008;99:711–9. https://doi.org/10.1160/TH07-05-0334

Article  CAS  PubMed  Google Scholar 

Vion AC, Ramkhelawon B, Loyer X, Chironi G, Devue C, Loirand G, Tedgui A, Lehoux S, Boulanger CM. Shear stress regulates endothelial microparticle release. Circ Res. 2013;112:1323–33. https://doi.org/10.1161/CIRCRESAHA.112.300818

Article  CAS  PubMed  Google Scholar 

Kanda H, Yamakuchi M, Matsumoto K, Mukaihara K, Shigehisa Y, Tachioka S, Okawa M, Takenouchi K, Oyama Y, Hashiguchi T, Imoto Y. Dynamic changes in platelets caused by shear stress in aortic valve stenosis. Clin Hemorheol Microcirc. 2021;77:71–81. https://doi.org/10.3233/CH-200928

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anselmo A, Frank D, Papa L, Viviani AC, Di Pasquale E, Mazzola M, Panico C, Clemente F, Soldani C, Pagiatakis C, Hinkel R, Thalmann R, Kozlik-Feldmann R, Miragoli M, Carullo P, Vacchiano M, Chaves-Sanjuan A, Santo N, Losi MA, Ferrari MC, Puca AA, Christiansen V, Seoudy H, Freitag-Wolf S, Frey N, Dempfle A, Mercola M, Esposito G, Briguori C, Kupatt C, Condorelli G. Myocardial hypoxic stress mediates functional cardiac extracellular vesicle release. Eur Heart J. 2021;42:2780–92.

Comments (0)

No login
gif