Trimaille A, Hmadeh S, Matsushita K, Marchandot B, Kauffenstein G, Morel O. Aortic stenosis and the haemostatic system. Cardiovasc Res. 2023;119:1310–23. https://doi.org/10.1093/cvr/cvac192
Article CAS PubMed Google Scholar
Kaul H, Gutzwiller JP, Schneider K, Dirsch O, Häusermann M. Aortic valve stenosis as a cause of major systemic embolism–a case report. Angiology. 1998;49:231–4. https://doi.org/10.1177/000331979804900310
Article CAS PubMed Google Scholar
Alajaji W, Hornick JM, Malek E, Klein AL. The characteristics and outcomes of native aortic valve thrombosis: A systematic review. J Am Coll Cardiol. 2021;78. https://doi.org/10.1016/j.jacc.2021.06.023. 811– 24.
Natale F, Aronne L, Credendino M, Siciliano A, Allocca F, Weizs SH, Martone F, di Marco GM, Calabrò P, Tedesco MA, Russo MG, Calabrò R. Which is the correct management of patients with asymptomatic severe calcific aortic stenosis after symptomatic spontaneous calcium cerebral embolism? J Cardiovasc Med. 2011;12:428–9. https://doi.org/10.2459/JCM.0b013e328344bcc7
Soodi D, VanWormer JJ, Rezkalla SH. Aspirin in primary prevention of cardiovascular events, clin. Med Res. 2020;18:89–94. https://doi.org/10.3121/cmr.2020.1548
Brouwer J, Nijenhuis VJ, Delewi R, Hermanides RS, Holvoet W, Dubois C, Frambach P, De Bruyne B, van Houwelingen GK, Van Der Heyden J, Toušek P, van der Kley F, Buysschaert I, Schotborgh CE, Ferdinande B, van der Harst P, Roosen J, Peper J, Thielen F, Veenstra L, Chan PYD, Swaans MJ, Rensing B, van T HA, Timmers L, Kelder JC, Stella PR, Baan J. Ten, aspirin with or without clopidogrel after transcatheter Aortic-Valve implantation, N. Engl. J Med. 2020;383:1447–57. https://doi.org/10.1056/NEJMoa2017815
Tognarelli EI, Retamal-Díaz A, Farías MA, Duarte LF, Palomino TF, Ibañez FJ, Riedel CA, Kalergis AM, Bueno SM, González PA. Pharmacological Inhibition of IRE-1 alpha activity in herpes simplex virus type 1 and type 2-Infected dendritic cells enhances T cell activation. Front Immunol. 2021;12:764861. https://doi.org/10.3389/fimmu.2021.764861
Article CAS PubMed Google Scholar
Cervantes F, Arellano-Rodrigo E, Alvarez-Larrán A. Blood cell activation in myeloproliferative neoplasms. Haematologica. 2009;94:1484–8. https://doi.org/10.3324/haematol.2009.013375
Article CAS PubMed PubMed Central Google Scholar
Matte A, Federti E, De Franceschi L. Erythrocyte pyruvate kinase activation in red cell disorders. Curr Opin Hematol. 2023;30. https://doi.org/10.1097/MOH.0000000000000758. 93– 8.
Keating FK, Butenas S, Fung MK, Schneider DJ. Platelet-white blood cell (WBC) interaction, WBC apoptosis, and procoagulant activity in stored red blood cells. Transfusion. 2011;51:1086–95. https://doi.org/10.1111/j.1537-2995.2010.02950.x
Morel O, Morel N, Freyssinet JM, Toti F. Platelet microparticles and vascular cells interactions: a checkpoint between the haemostatic and thrombotic responses. Platelets. 2008;19:9–23. https://doi.org/10.1080/09537100701817232
Article CAS PubMed Google Scholar
Vahidkhah K, Cordasco D, Abbasi M, Ge L, Tseng E, Bagchi P, Azadani AN. Flow-Induced damage to blood cells in aortic valve stenosis. Ann Biomed Eng. 2016;44:2724–36. https://doi.org/10.1007/s10439-016-1577-7
Article PubMed PubMed Central Google Scholar
Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339:161–6. https://doi.org/10.1126/science.1230719
Article CAS PubMed PubMed Central Google Scholar
Wang L, Bi Y, Yu M, Li T, Tong D, Yang X, Zhang C, Guo L, Wang C, Kou Y, Dong Z, Novakovic VA, Tian Y, Kou J, Shammas MA, Shi J. Phosphatidylserine-exposing blood cells and microparticles induce procoagulant activity in non-valvular atrial fibrillation. Int J Cardiol. 2018;258:138–43. https://doi.org/10.1016/j.ijcard.2018.01.116
Coté N, Mahmut A, Bosse Y, Couture C, Pagé S, Trahan S, Boulanger MC, Fournier D, Pibarot P, Mathieu P. Inflammation is associated with the remodeling of calcific aortic valve disease. Inflammation. 2013;36:573–81. https://doi.org/10.1007/s10753-012-9579-6
Article CAS PubMed Google Scholar
Álvarez-Heredia P, Domínguez-Del-Castillo JJ, Reina-Alfonso I, Gutiérrez-González C, Hassouneh F, Batista-Duharte A, Trujillo-Aguilera A, López-Romero R, Muñoz I, Solana R, Pera A. A straightforward Cytometry-Based protocol for the comprehensive analysis of the inflammatory valve infiltrate in aortic stenosis. Int J Mol Sci. 2023;24. https://doi.org/10.3390/ijms24032194
Baratchi S, Zaldivia M, Wallert M, Loseff-Silver J, Al-Aryahi S, Zamani J, Thurgood P, Salim A, Htun NM, Stub D, Vahidi P, Duffy SJ, Walton A, Nguyen TH, Jaworowski A, Khoshmanesh K, Peter K. Transcatheter aortic valve implantation represents an Anti-Inflammatory therapy via reduction of shear Stress-Induced, Piezo-1-Mediated monocyte activation. Circulation. 2020;142:1092–105. https://doi.org/10.1161/CIRCULATIONAHA.120.045536
Article CAS PubMed Google Scholar
Jhun CS, Newswanger R, Cysyk JP, Ponnaluri S, Good B, Manning KB, Rosenberg G. Dynamics of blood flows in aortic stenosis: mild, moderate, and severe. ASAIO J. 2021;67:666–74. https://doi.org/10.1097/MAT.0000000000001296
Article PubMed PubMed Central Google Scholar
Wu ZH, Ji CL, Li H, Qiu GX, Gao CJ, Weng XS. Membrane microparticles and diseases. Eur Rev Med Pharmacol Sci. 2013;17:2420–7.
Noubouossie DF, Henderson MW, Mooberry M, Ilich A, Ellsworth P, Piegore M, Skinner SC, Pawlinski R, Welsby I, Renné T, Hoffman M, Monroe DM, Key NS. Red blood cell microvesicles activate the contact system, leading to factor IX activation via 2 independent pathways. Blood. 2020;135:755–65. https://doi.org/10.1182/blood.2019001643
Article PubMed PubMed Central Google Scholar
Grover SP, Mackman N, Factor T. An essential mediator of hemostasis and trigger of thrombosis, arterioscler. Thromb Vasc Biol. 2018;38:709–25. https://doi.org/10.1161/ATVBAHA.117.309846
Tan X, Shi J, Fu Y, Gao C, Yang X, Li J, Wang W, Hou J, Li H, Zhou J. Role of erythrocytes and platelets in the hypercoagulable status in polycythemia vera through phosphatidylserine exposure and microparticle generation. Thromb Haemost. 2013;109:1025–32. https://doi.org/10.1160/TH12-11-0811
Article CAS PubMed Google Scholar
Falk V, Baumgartner H, Bax JJ, De Bonis M, Hamm C, Holm PJ, Iung B, Lancellotti P, Lansac E, Muñoz DR, Rosenhek R, Sjögren J, Tornos MP, Vahanian A, Walther T, Wendler O, Windecker S, Zamorano JL. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur J Cardiothorac Surg. 2017;52. https://doi.org/10.1093/ejcts/ezx324. 616– 64.
Shi J, Heegaard CW, Rasmussen JT, Gilbert GE. Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Biochim Biophys Acta. 2004;1667:82–90. https://doi.org/10.1016/j.bbamem.2004.09.006
Article CAS PubMed Google Scholar
Chi H, Shao Y, Xie F, Zhang J, Zhang G, Jiang G, Tong D, Li J. Procoagulant effect of extracellular vesicles in patients after transcatheter aortic valve replacement or transcatheter aortic valve replacement with percutaneous coronary intervention. J Thromb Thrombolysis. 2023;56:264–74. https://doi.org/10.1007/s11239-023-02835-5
Article CAS PubMed Google Scholar
He Z, Zhang Y, Cao M, Ma R, Meng H, Yao Z, Zhao L, Liu Y, Wu X, Deng R, Dong Z, Bi Y, Kou J, Novakovic V, Shi J, Hao L. Increased phosphatidylserine-exposing microparticles and their originating cells are associated with the coagulation process in patients with IgA nephropathy. Nephrol Dial Transpl. 2016;31. https://doi.org/10.1093/ndt/gfv403. 747– 59.
Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambayashi J. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis. 2001;158:277–87. https://doi.org/10.1016/s0021-9150(01)00433-6
Article CAS PubMed Google Scholar
Diehl P, Nagy F, Sossong V, Helbing T, Beyersdorf F, Olschewski M, Bode C, Moser M. Increased levels of Circulating microparticles in patients with severe aortic valve stenosis. Thromb Haemost. 2008;99:711–9. https://doi.org/10.1160/TH07-05-0334
Article CAS PubMed Google Scholar
Vion AC, Ramkhelawon B, Loyer X, Chironi G, Devue C, Loirand G, Tedgui A, Lehoux S, Boulanger CM. Shear stress regulates endothelial microparticle release. Circ Res. 2013;112:1323–33. https://doi.org/10.1161/CIRCRESAHA.112.300818
Article CAS PubMed Google Scholar
Kanda H, Yamakuchi M, Matsumoto K, Mukaihara K, Shigehisa Y, Tachioka S, Okawa M, Takenouchi K, Oyama Y, Hashiguchi T, Imoto Y. Dynamic changes in platelets caused by shear stress in aortic valve stenosis. Clin Hemorheol Microcirc. 2021;77:71–81. https://doi.org/10.3233/CH-200928
Article CAS PubMed PubMed Central Google Scholar
Anselmo A, Frank D, Papa L, Viviani AC, Di Pasquale E, Mazzola M, Panico C, Clemente F, Soldani C, Pagiatakis C, Hinkel R, Thalmann R, Kozlik-Feldmann R, Miragoli M, Carullo P, Vacchiano M, Chaves-Sanjuan A, Santo N, Losi MA, Ferrari MC, Puca AA, Christiansen V, Seoudy H, Freitag-Wolf S, Frey N, Dempfle A, Mercola M, Esposito G, Briguori C, Kupatt C, Condorelli G. Myocardial hypoxic stress mediates functional cardiac extracellular vesicle release. Eur Heart J. 2021;42:2780–92.
Comments (0)