Fibrodysplasia ossificans progressiva: genetic and clinical characterization in a cohort of Polish patients and review of potential therapies

Anwar S, Yokota T (2023) Navigating the complex landscape of fibrodysplasia ossificans progressiva: from current paradigms to therapeutic frontiers. Genes (Basel) 14:2162. https://doi.org/10.3390/genes14122162

Article  CAS  PubMed  Google Scholar 

Aykul S, Huang L, Wang L, Das NM, Reisman S, Ray Y et al (2022) Anti-ACVR1 antibodies exacerbate heterotopic ossification in fibrodysplasia ossificans progressiva (FOP) by activating FOP-mutant ACVR1. J Clin Invest 132:e153792. https://doi.org/10.1172/JCI153792

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bocciardi R, Bordo D, Di Duca M, Di Rocco M, Ravazzolo R (2009) Mutational analysis of the ACVR1 gene in Italian patients affected with fibrodysplasia ossificans progressiva: confirmations and advancements. Eur J Hum Genet 17:311–318. https://doi.org/10.1038/ejhg.2008.178

Article  CAS  PubMed  Google Scholar 

Bukowska-Olech E, Sowińska-Seidler A, Szczałuba K, Jamsheer A (2020) A novel biallelic splice-site variant in the LRP4 gene causes sclerosteosis 2. Birth Defects Res 112:652–659. https://doi.org/10.1002/bdr2.1676

Article  CAS  PubMed  Google Scholar 

Cappato S, Traberg R, Gintautiene J, Zara F, Bocciardi R (2021) A case of Fibrodysplasia Ossificans Progressiva associated with a novel variant of the ACVR1 gene. Mol Genet Genomic 9:1–8. https://doi.org/10.1002/mgg3.1774

Article  CAS  Google Scholar 

Carvalho DR, Navarro MMM, Martins BJAF, Coelho KEFA, Mello WD, Takata RI et al (2010) Mutational screening of ACVR1 gene in Brazilian fibrodysplasia ossificans progressiva patients. Clin Genet 77:171–176. https://doi.org/10.1111/j.1399-0004.2009.01256.x

Article  CAS  PubMed  Google Scholar 

Dąbrowska M, Dąbrowski P, Tabarkiewicz J (2019) Fibrodysplasia ossificans progressiva – a presentation of cases and literature review. Eur J Clin Exp Med 17:184–191

Article  Google Scholar 

Dulski J, Sławek J (2020) Fibrodysplasia ossificans progressiva as a form of pseudodystonia. Parkinsonism Relat Disord 77:180–181. https://doi.org/10.1016/j.parkreldis.2020.01.013

Article  PubMed  Google Scholar 

Eresen Yazıcıoğlu C, Karatosun V, Kızıldağ S, Ozsoylu D, Kavukçu S (2013) ACVR1 gene mutations in four Turkish patients diagnosed as fibrodysplasia ossificans progressiva. Gene 515:444–446. https://doi.org/10.1016/j.gene.2012.12.005

Article  CAS  PubMed  Google Scholar 

Furuya H, Ikezoe K, Wang L, Ohyagi Y, Motomura K, Fujii N et al (2008) A unique case of fibrodysplasia ossificans progressiva with an ACVR1 mutation, G356D, other than the common mutation (R206H). Am J Hum Genet 146A:459–463. https://doi.org/10.1002/ajmg.a.32151

Article  CAS  Google Scholar 

Gregson CL, Hollingworth P, Williams M, Petrie KA, Bullock AN, Brown MA et al (2011) A novel ACVR1 mutation in the glycine/serine-rich domain found in the most benign case of a fibrodysplasia ossificans progressiva variant reported to date. Bone 48:654–658. https://doi.org/10.1016/j.bone.2010.10.164

Article  CAS  PubMed  Google Scholar 

Hasegawa K, Tanaka H, Futagawa N, Miyahara H, Tsukahara H (2022) Rapid progression of heterotopic ossification in severe variant of fibrodysplasia ossificans progressiva with p.Arg258Gly in ACVR1: a case report and review of clinical phenotypes. Case Rep Genet 2022:1–6. https://doi.org/10.1155/2022/5021758

Article  Google Scholar 

Hatsell SJ, Idone V, Wolken DMA, Huang L, Kim HJ, Wang L et al (2015) ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med 7:1–11. https://doi.org/10.1126/scitranslmed.aac4358

Article  CAS  Google Scholar 

He K, Jiang H, Li W, Toutounchi S, Huang Y, Wu J et al (2024) Primary cilia mediate skeletogenic BMP and Hedgehog signaling in heterotopic ossification. Sci Transl Med 16(757):eabn3486. https://doi.org/10.1126/scitranslmed.abn3486

Article  CAS  PubMed  Google Scholar 

Hedger MP, Winnall WR (2012) Regulation of activin and inhibin in the adult testis and the evidence for functional roles in spermatogenesis and immunoregulation. Mol Cell Endocrinol 359:30–42. https://doi.org/10.1016/j.mce.2011.09.031

Article  CAS  PubMed  Google Scholar 

Hino K, Horigome K, Nishio M, Komura S, Nagata S, Zhao C et al (2017) Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J Clin Invest 127:3339–3352. https://doi.org/10.1172/JCI93521

Article  PubMed  PubMed Central  Google Scholar 

Hüning I, Gillessen-Kaesbach G (2014) Fibrodysplasia ossificans progressiva: clinical course, genetic mutations and genotype-phenotype correlation. Mol Syndromol 5:201–211. https://doi.org/10.1159/000365770

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kan C, Yang J, Na D, Xu Y, Yang B, Zhao H et al (2019) Inhibition of immune checkpoints prevents injury-induced heterotopic ossification. Bone Res 7:33. https://doi.org/10.1038/s41413-019-0074-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaplan FS, Xu M, Seemann P, Connor JM, Glaser DL, Carroll L et al (2009) Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat 30:379–390. https://doi.org/10.1002/humu.20868

Article  CAS  PubMed  Google Scholar 

Kaplan FS, Chakkalakal SA, Shore EM (2012) Fibrodysplasia ossificans progressiva: mechanisms and models of skeletal metamorphosis. DMM Dis Model Mech 5:756–762. https://doi.org/10.1242/dmm.010280

Article  CAS  PubMed  Google Scholar 

Kaplan FS, Kobori JA, Orellana C, Calvo I, Rosello M, Martinez F et al (2015) Multi-system involvement in a severe variant of fibrodysplasia ossificans progressiva (ACVR1 c.772G>A; R258G): a report of two patients. Am J Med Genet 167:2265–2271. https://doi.org/10.1002/ajmg.a.37205

Article  Google Scholar 

Kaplan FS, Zeitlin L, Dunn SP, Benor S, Hagin D, Al Mukaddam M et al (2018) Acute and chronic rapamycin use in patients with fibrodysplasia ossificans progressiva: a report of two cases. Bone 109:281–284. https://doi.org/10.1016/j.bone.2017.12.011

Article  PubMed  Google Scholar 

Kaplan FS, Groppe JC, Xu M, Towler OW, Grunvald E, Kalunian K et al (2022) An ACVR1R375P pathogenic variant in two families with mild fibrodysplasia ossificans progressiva. Am J Med Genet Part A 188:806–817. https://doi.org/10.1002/ajmg.a.62585

Article  CAS  PubMed  Google Scholar 

Kawamata M, Suzuki HI, Kimura R, Suzuki A (2023) Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs. Nat Biomed Eng 7:672–691. https://doi.org/10.1038/s41551-023-01011-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan F, Yu X, Hsiao EC (2021) Cardiopulmonary and neurologic dysfunctions in fibrodysplasia ossificans progressiva. Biomedicines 9:1–15. https://doi.org/10.3390/biomedicines9020155

Article  CAS  Google Scholar 

Kim B-Y, Jeong S, Lee S-Y, Lee SM, Gweon EJ, Ahn H et al (2016) Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC. Exp Mol Med 48:e237. https://doi.org/10.1038/emm.2016.43

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knight PG, Satchell L, Glister C (2012) Intra-ovarian roles of activins and inhibins. Mol Cell Endocrinol 359:53–65. https://doi.org/10.1016/j.mce.2011.04.024

Article  CAS  PubMed  Google Scholar 

Lounev V, Groppe JC, Brewer N, Wentworth KL, Smith V, Xu M, Schomburg L et al (2024) Matrix metalloproteinase-9 deficiency confers resilience in fibrodysplasia ossificans progressiva in a man and mice. J Bone Miner Res 39:382–398. https://doi.org/10.1093/jbmr/zjae029

Article  PubMed  Google Scholar 

Maekawa H, Kawai S, Nishio M, Nagata S, Jin Y, Yoshitomi H et al (2020) Prophylactic treatment of rapamycin ameliorates naturally developing and episode-induced heterotopic ossification in mice expressing human mutant ACVR1. Orphanet J Rare Dis 15:1–11. https://doi.org/10.1186/s13023-020-01406-8

Article 

Comments (0)

No login
gif