Anwar S, Yokota T (2023) Navigating the complex landscape of fibrodysplasia ossificans progressiva: from current paradigms to therapeutic frontiers. Genes (Basel) 14:2162. https://doi.org/10.3390/genes14122162
Article CAS PubMed Google Scholar
Aykul S, Huang L, Wang L, Das NM, Reisman S, Ray Y et al (2022) Anti-ACVR1 antibodies exacerbate heterotopic ossification in fibrodysplasia ossificans progressiva (FOP) by activating FOP-mutant ACVR1. J Clin Invest 132:e153792. https://doi.org/10.1172/JCI153792
Article CAS PubMed PubMed Central Google Scholar
Bocciardi R, Bordo D, Di Duca M, Di Rocco M, Ravazzolo R (2009) Mutational analysis of the ACVR1 gene in Italian patients affected with fibrodysplasia ossificans progressiva: confirmations and advancements. Eur J Hum Genet 17:311–318. https://doi.org/10.1038/ejhg.2008.178
Article CAS PubMed Google Scholar
Bukowska-Olech E, Sowińska-Seidler A, Szczałuba K, Jamsheer A (2020) A novel biallelic splice-site variant in the LRP4 gene causes sclerosteosis 2. Birth Defects Res 112:652–659. https://doi.org/10.1002/bdr2.1676
Article CAS PubMed Google Scholar
Cappato S, Traberg R, Gintautiene J, Zara F, Bocciardi R (2021) A case of Fibrodysplasia Ossificans Progressiva associated with a novel variant of the ACVR1 gene. Mol Genet Genomic 9:1–8. https://doi.org/10.1002/mgg3.1774
Carvalho DR, Navarro MMM, Martins BJAF, Coelho KEFA, Mello WD, Takata RI et al (2010) Mutational screening of ACVR1 gene in Brazilian fibrodysplasia ossificans progressiva patients. Clin Genet 77:171–176. https://doi.org/10.1111/j.1399-0004.2009.01256.x
Article CAS PubMed Google Scholar
Dąbrowska M, Dąbrowski P, Tabarkiewicz J (2019) Fibrodysplasia ossificans progressiva – a presentation of cases and literature review. Eur J Clin Exp Med 17:184–191
Dulski J, Sławek J (2020) Fibrodysplasia ossificans progressiva as a form of pseudodystonia. Parkinsonism Relat Disord 77:180–181. https://doi.org/10.1016/j.parkreldis.2020.01.013
Eresen Yazıcıoğlu C, Karatosun V, Kızıldağ S, Ozsoylu D, Kavukçu S (2013) ACVR1 gene mutations in four Turkish patients diagnosed as fibrodysplasia ossificans progressiva. Gene 515:444–446. https://doi.org/10.1016/j.gene.2012.12.005
Article CAS PubMed Google Scholar
Furuya H, Ikezoe K, Wang L, Ohyagi Y, Motomura K, Fujii N et al (2008) A unique case of fibrodysplasia ossificans progressiva with an ACVR1 mutation, G356D, other than the common mutation (R206H). Am J Hum Genet 146A:459–463. https://doi.org/10.1002/ajmg.a.32151
Gregson CL, Hollingworth P, Williams M, Petrie KA, Bullock AN, Brown MA et al (2011) A novel ACVR1 mutation in the glycine/serine-rich domain found in the most benign case of a fibrodysplasia ossificans progressiva variant reported to date. Bone 48:654–658. https://doi.org/10.1016/j.bone.2010.10.164
Article CAS PubMed Google Scholar
Hasegawa K, Tanaka H, Futagawa N, Miyahara H, Tsukahara H (2022) Rapid progression of heterotopic ossification in severe variant of fibrodysplasia ossificans progressiva with p.Arg258Gly in ACVR1: a case report and review of clinical phenotypes. Case Rep Genet 2022:1–6. https://doi.org/10.1155/2022/5021758
Hatsell SJ, Idone V, Wolken DMA, Huang L, Kim HJ, Wang L et al (2015) ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med 7:1–11. https://doi.org/10.1126/scitranslmed.aac4358
He K, Jiang H, Li W, Toutounchi S, Huang Y, Wu J et al (2024) Primary cilia mediate skeletogenic BMP and Hedgehog signaling in heterotopic ossification. Sci Transl Med 16(757):eabn3486. https://doi.org/10.1126/scitranslmed.abn3486
Article CAS PubMed Google Scholar
Hedger MP, Winnall WR (2012) Regulation of activin and inhibin in the adult testis and the evidence for functional roles in spermatogenesis and immunoregulation. Mol Cell Endocrinol 359:30–42. https://doi.org/10.1016/j.mce.2011.09.031
Article CAS PubMed Google Scholar
Hino K, Horigome K, Nishio M, Komura S, Nagata S, Zhao C et al (2017) Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J Clin Invest 127:3339–3352. https://doi.org/10.1172/JCI93521
Article PubMed PubMed Central Google Scholar
Hüning I, Gillessen-Kaesbach G (2014) Fibrodysplasia ossificans progressiva: clinical course, genetic mutations and genotype-phenotype correlation. Mol Syndromol 5:201–211. https://doi.org/10.1159/000365770
Article CAS PubMed PubMed Central Google Scholar
Kan C, Yang J, Na D, Xu Y, Yang B, Zhao H et al (2019) Inhibition of immune checkpoints prevents injury-induced heterotopic ossification. Bone Res 7:33. https://doi.org/10.1038/s41413-019-0074-7
Article CAS PubMed PubMed Central Google Scholar
Kaplan FS, Xu M, Seemann P, Connor JM, Glaser DL, Carroll L et al (2009) Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat 30:379–390. https://doi.org/10.1002/humu.20868
Article CAS PubMed Google Scholar
Kaplan FS, Chakkalakal SA, Shore EM (2012) Fibrodysplasia ossificans progressiva: mechanisms and models of skeletal metamorphosis. DMM Dis Model Mech 5:756–762. https://doi.org/10.1242/dmm.010280
Article CAS PubMed Google Scholar
Kaplan FS, Kobori JA, Orellana C, Calvo I, Rosello M, Martinez F et al (2015) Multi-system involvement in a severe variant of fibrodysplasia ossificans progressiva (ACVR1 c.772G>A; R258G): a report of two patients. Am J Med Genet 167:2265–2271. https://doi.org/10.1002/ajmg.a.37205
Kaplan FS, Zeitlin L, Dunn SP, Benor S, Hagin D, Al Mukaddam M et al (2018) Acute and chronic rapamycin use in patients with fibrodysplasia ossificans progressiva: a report of two cases. Bone 109:281–284. https://doi.org/10.1016/j.bone.2017.12.011
Kaplan FS, Groppe JC, Xu M, Towler OW, Grunvald E, Kalunian K et al (2022) An ACVR1R375P pathogenic variant in two families with mild fibrodysplasia ossificans progressiva. Am J Med Genet Part A 188:806–817. https://doi.org/10.1002/ajmg.a.62585
Article CAS PubMed Google Scholar
Kawamata M, Suzuki HI, Kimura R, Suzuki A (2023) Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs. Nat Biomed Eng 7:672–691. https://doi.org/10.1038/s41551-023-01011-7
Article CAS PubMed PubMed Central Google Scholar
Khan F, Yu X, Hsiao EC (2021) Cardiopulmonary and neurologic dysfunctions in fibrodysplasia ossificans progressiva. Biomedicines 9:1–15. https://doi.org/10.3390/biomedicines9020155
Kim B-Y, Jeong S, Lee S-Y, Lee SM, Gweon EJ, Ahn H et al (2016) Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC. Exp Mol Med 48:e237. https://doi.org/10.1038/emm.2016.43
Article CAS PubMed PubMed Central Google Scholar
Knight PG, Satchell L, Glister C (2012) Intra-ovarian roles of activins and inhibins. Mol Cell Endocrinol 359:53–65. https://doi.org/10.1016/j.mce.2011.04.024
Article CAS PubMed Google Scholar
Lounev V, Groppe JC, Brewer N, Wentworth KL, Smith V, Xu M, Schomburg L et al (2024) Matrix metalloproteinase-9 deficiency confers resilience in fibrodysplasia ossificans progressiva in a man and mice. J Bone Miner Res 39:382–398. https://doi.org/10.1093/jbmr/zjae029
Maekawa H, Kawai S, Nishio M, Nagata S, Jin Y, Yoshitomi H et al (2020) Prophylactic treatment of rapamycin ameliorates naturally developing and episode-induced heterotopic ossification in mice expressing human mutant ACVR1. Orphanet J Rare Dis 15:1–11. https://doi.org/10.1186/s13023-020-01406-8
Comments (0)