Melatonin in crop plants: from biosynthesis through pleiotropic effects to enhanced stress resilience

Ahammed GJ, Xu W, Liu A, Chen S (2019) Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environ Exp Bot 161:303–311. https://doi.org/10.1016/j.envexpbot.2018.06.006

Article  CAS  Google Scholar 

Ali M, Pan Y, Liu H, Cheng Z (2023) Melatonin interaction with abscisic acid in the regulation of abiotic stress in Solanaceae family plants. Front Plant Sci 14:1271137. https://doi.org/10.3389/fpls.2023.1271137

Article  PubMed  PubMed Central  Google Scholar 

Ali S, Gill RA, Ulhassan Z, Zhang N, Hussain S, Zhang K, Huang Q, Sagir M, Tahir MB, Gill MB, Mwamba TM, Ali B, Zhou W (2023) Exogenously applied melatonin enhanced the tolerance of Brassica napus against cobalt toxicity by modulating antioxidant defense, osmotic adjustment, and expression of stress response genes. Ecotoxicol Environ Saf 1(252):114624. https://doi.org/10.1016/j.ecoenv.2023.114624

Article  CAS  Google Scholar 

Altaf MA, Shahid R, Ren MX, Naz S, Altaf MM, Khan LU, Tiwari RK, Lal MK, Shahid MA, Kumar R, Nawaz MA, Jahan MS, Jan BL, Ahmad P (2022a) Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants 11(2):309. https://doi.org/10.3390/antiox11020309

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altaf MA, Shu H, Hao Y, Mumtaz MA, Lu X, Wang Z (2022b) Melatonin affects the photosynthetic performance of pepper (Capsicum annuum L.) seedlings under cold stress. Antioxidants 11(12):2414. https://doi.org/10.3390/antiox11122414

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altamura MM, Piacentini D, Della Rovere F, Fattorini L, Falasca G, Betti C (2023) New paradigms in brassinosteroids, strigolactones, sphingolipids, and nitric oxide interaction in the control of lateral and adventitious root formation. Plants 12(2):413. https://doi.org/10.3390/plants12020413

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arnao MB, Giraldo-Acosta M, Castejón-Castillejo A, Losada-Lorán M, Sánchez-Herrerías P, El Mihyaoui A, Cano A, Hernández-Ruiz J (2023) Melatonin from microorganisms, algae, and plants as possible alternatives to synthetic melatonin. Metabolites 13:72. https://doi.org/10.3390/metabo13010072

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arnao MB, Hernández-Ruiz J (2017) Growth activity, rooting capacity, and tropism: three auxinic precepts fulfilled by melatonin. Acta Physiol Plant 39:127. https://doi.org/10.1007/s11738-017-2428-3

Article  CAS  Google Scholar 

Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24(1):38–48. https://doi.org/10.1016/j.tplants.2018.10.010

Article  CAS  PubMed  Google Scholar 

Arnao MB, Hernández-Ruiz J (2021) Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biol 1:7–19. https://doi.org/10.1111/plb.13202

Article  CAS  Google Scholar 

Back K (2021) Melatonin metabolism, signaling and possible roles in plants. Plant J 105:376–391. https://doi.org/10.1111/tpj.14915

Article  CAS  PubMed  Google Scholar 

Back K, Tan DX, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 61:426–437. https://doi.org/10.1111/jpi.12364

Article  CAS  PubMed  Google Scholar 

Bai Y, Wei Y, Yin H, Hu W, Cheng X, Guo J, Dong Y, Zheng L, Xie H, Zeng H, Reiter RJ, Shi H (2022) PP2C1 fine-tunes melatonin biosynthesis and phytomelatonin receptor PMTR1 binding to melatonin in cassava. J Pineal Res 73(1):e12804. https://doi.org/10.1111/jpi.12804

Article  CAS  PubMed  Google Scholar 

Barman D, Kumar MN, Dalal M, Khan FN, Yadav J, Nagar S, Kumar VVS, Singh MP, Sathee L, Krishnan SG, Chinnusamy V (2023) Identification of rice melatonin receptor OsPMTR and its comparative in silico analysis with arabidopsis AtCAND2 receptor. S Afr J Bot 162:813–829. https://doi.org/10.1016/j.sajb.2023.09.054

Article  CAS  Google Scholar 

Bellmaine S, Schnellbaecher A, Zimmer A (2020) Reactivity and degradation products of tryptophan in solution and proteins. Free Radic Biol Med 160:696–718. https://doi.org/10.1016/j.freeradbiomed.2020.09.002

Article  CAS  PubMed  Google Scholar 

Bhowal B, Bhattacharjee A, Goswami K, Sanan-Mishra N, Singla-Pareek S, Kaur C, Sopory S (2021) Serotonin and melatonin biosynthesis in plants: genome-wide identification of the genes and their expression reveal a conserved role in stress and development. Int J Mol Sci 22:11034. https://doi.org/10.3390/ijms222011034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bisquert R, Planells-Cárcel A, Alonso-Del-Real J, Muñiz-Calvo S, Guillamón JM (2023) The role of the PAA1 gene on melatonin biosynthesis in Saccharomyces cerevisiae: a search of new arylalkylamine N-acetyltransferases. Microorganisms 11(5):1115. https://doi.org/10.3390/microorganisms11051115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bocheva G, Slominski RM, Janjetovic Z, Kim TK, Böhm M, Steinbrink K, Reiter RJ, Kleszczyński K, Slominski AT (2022) Protective role of melatonin and its metabolites in skin aging. Int J Mol Sci 23(3):1238. https://doi.org/10.3390/ijms23031238

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bychkov IA, Kudryakova NV, Shugaev AG, Kuznetsov VV, Kusnetsov VV (2022) The melatonin receptor CAND2/PMTR1 is involved in the regulation of mitochondrial gene expression under photooxidative stress. Dokl Biochem Biophys 502(1):15–20. https://doi.org/10.1134/S1607672922010021

Article  CAS  PubMed  Google Scholar 

Byeon Y, Choi GH, Lee HY, Back K (2015) Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice. J Exp Bot 66(21):6917–6925. https://doi.org/10.1093/jxb/erv396

Article  CAS  PubMed  PubMed Central  Google Scholar 

Byeon Y, Lee HY, Back K (2016) Cloning and characterization of the serotonin N-acetyltransferase-2 gene (SNAT2) in rice (Oryza sativa). J Pineal Res 61(2):198–207. https://doi.org/10.1111/jpi.12339

Article  CAS  PubMed  Google Scholar 

Byeon Y, Lee HY, Lee K, Park S, Back K (2014) Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT. J Pineal Res 56:107–114. https://doi.org/10.1111/jpi.12103

Article  CAS  PubMed  Google Scholar 

Byeon Y, Lee K, Park YI, Park S, Back K (2013) Molecular cloning and functional analysis of serotonin N-acetyltransferase from the cyanobacterium Synechocystis sp. PCC 6803. J Pineal Res 55(4):371–376. https://doi.org/10.1111/jpi.12080

Article  CAS  PubMed  Google Scholar 

Byeon Y, Tan DX, Reiter RJ, Back K (2015) Predominance of 2-hydroxymelatonin over melatonin in plants. J Pineal Res 59:448–454. https://doi.org/10.1111/jpi.12274

Article  CAS  PubMed  Google Scholar 

Cecon E, Oishi A, Jockers R (2018) Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol 175(16):3263–3280. https://doi.org/10.1111/bph.13950

Article  CAS  PubMed  Google Scholar 

Chang J, Guo Y, Yan J et al (2021) The role of watermelon caffeic acid O-methyltransferase (ClCOMT1) in melatonin biosynthesis and abiotic stress tolerance. Hortic Res 8:210. https://doi.org/10.1038/s41438-021-00645-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen H, Bullock DA Jr, Alonso JM, Stepanova AN (2021) To fight or to grow: the balancing role of ethylene in plant abiotic stress responses. Plants 11(1):33. https://doi.org/10.3390/plants11010033

Article  CAS  PubMed 

Comments (0)

No login
gif