Identification of subtropical breeding lines for ideal plant architecture in maize through multiple selection indices

Alam Z, Akter S, Khan MAH, Hossain MI, Amin MN, Biswas A, Rahaman EHMS, Ali MA, Chanda D, Rahman MHS, Kawochar MA, Alam MS, Molla MM, Islam MM, Jahan MAHS, Prodhan MZH, Kadir MM, Sarker D et al. (2024) Sweet potato (Ipomoea batatas L.) genotype selection using advanced indices and statistical models: a multi-year approach. Heliyon 10(10):e31569. https://doi.org/10.1016/j.heliyon.2024.e31569

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bai W, Zhang H, Zhang Z, Teng F, Wang L, Tao Y, Zheng Y et al. (2010) The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations. Plant Breed 129(4):376–384.https://doi.org/10.1111/j.1439-0523.2009.01709.x

Article  Google Scholar 

Barten TJ, Kosola KR, Dohleman FG, Eller M, Brzostowski L, Mueller S, Mioduszewski J, Gu C, Kashyap S, Ralston L, Renaud A, Hall M, Mack D, Gillespie K et al. (2022) Short-stature maize reduced wind damage during the 2020 midwestern derecho, improving yields and greenhouse gas outcomes. Crop Sci 62:2439–2450. https://doi.org/10.1002/csc2.20823

Article  Google Scholar 

Beavis WD, Grant D, Albertsen M, Fincher R et al. (1991) Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet 83:141–145. https://doi.org/10.1007/BF00226242

Article  PubMed  CAS  Google Scholar 

Bocianowski J, Niemann J, Nowosad K et al. (2019) Genotype-by-environment interaction for seed quality traits in interspecific cross-derived Brassica lines using additive main effects and multiplicative interaction model. Euphytica 215:7. https://doi.org/10.1007/s10681-018-2328-7

Article  CAS  Google Scholar 

Cui M, Jia B, Liu H, Kan X, Zhang Y, Zhou R, Li Z, Yang L, Deng D, Yin Z et al. (2017) Genetic mapping of the leaf number above the primary ear and its relationship with plant height and flowering time in maize. Front Plant Sci 8(1):279216. https://doi.org/10.3389/fpls.2017.01437

Article  Google Scholar 

Cui Z, Xia A, Zhang A, Luo J, Yang X, Zhang L, Ruan Y, He Y et al. (2018) Linkage mapping combined with association analysis reveals QTL and candidate genes for three husk traits in maize. Theor Appl Genet 131(10):2131–2144. https://doi.org/10.1007/s00122-018-3142-2

Article  PubMed  CAS  Google Scholar 

Dang D, Guan Y, Zheng H, Zhang X, Zhang A, Wang H, Ruan Y, Qin L et al. (2023) Genome-wide association study and genomic prediction on plant architecture traits in sweet corn and waxy corn. Plants 12(2):303. https://doi.org/10.3390/plants12020303

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dhillon J, Li X, Bheemanahalli R, Reed V et al. (2022) Mississippi state and county level yield gap in corn production. Agric Environ Lett 7(2):e20092. https://doi.org/10.1002/ael2.20092

Article  CAS  Google Scholar 

Doebley J, Stec A, Hubbard L et al. (1997) The evolution of apical dominance in maize. Nature 386(6624):485–488.https://doi.org/10.1038/386485a0

Article  PubMed  CAS  Google Scholar 

Duan H, Li J, Xue Z, Yang L, Sun Y, Ju X, Zhang J, Xu G, Sun L, Xu S, Xie H, Ding D, Zhang X, Zhang X, Tang J et al. (2025) Genetic dissection of internode length confers improvement for ideal plant architecture in maize. Plant J 121(3):e17245. https://doi.org/10.1111/tpj.17245

Article  PubMed  CAS  Google Scholar 

Edmeades GO, Trevisan W, Prasanna B M, Campos H (2017) Tropical maize (Zea mays L.). In: Genetic improvement of tropical crops, Springer, Cham. pp. 57–109 https://doi.org/10.1007/978-3-319-59819-2_3

Erenstein O, Jaleta M, Sonder K, Mottaleb K, Prasanna BM et al. (2022) Global maize production, consumption and trade: trends and R&D implications. Food Security 14(5):1295–1319. https://doi.org/10.1007/s12571-022-01288-7

Article  Google Scholar 

FAOSTAT (2023) Food and Agriculture Organization of the United Nations. Retrieved from https://www.fao.org/food-agriculture-statistics/en/ Accessed 11 March 2025

Farshadfar E (2008) Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pak J Biol Sci 11(14):1791–1796. https://doi.org/10.3923/pjbs.2008.1791.1796

Article  PubMed  CAS  Google Scholar 

Fei J, Lu J, Jiang Q, Liu Z, Yao D, Qu J, Liu S, Guan S, Ma Y et al. (2022) Maize plant architecture trait QTL mapping and candidate gene identification based on multiple environments and double populations. BMC Plant Biol 22(1):110. https://doi.org/10.1186/s12870-022-03470-7

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gao J, Liu N, Wang X, Niu Z, Liao Q, Ding R, Du T, Kang S, Tong L et al. (2024) Maintaining grain number by reducing grain abortion is the key to improve water use efficiency of maize under deficit irrigation and salt stress. Agric Water Manag 294:108727. https://doi.org/10.1016/j.agwat.2024.108727

Article  Google Scholar 

Hartings H, Berardo N, Mazzinelli GF, Valoti P, Verderio A, Motto M et al. (2008) Assessment of genetic diversity and relationships among maize (Zea mays L.) Italian landraces by morphological traits and AFLP profiling. Theor Appl Genet 117(6):831–842. https://doi.org/10.1007/s00122-008-0823-2

Article  PubMed  CAS  Google Scholar 

Hostetler AN, Sparks EE (2024) Root responses to abiotic stress: a comparative look at root system architecture in maize and sorghum. J Exp Bot 75(2):553–562. https://doi.org/10.1093/jxb/erad390

Article  PubMed  CAS  Google Scholar 

Hou X, Liu Y, Xiao Q, Wei B, Zhang X, Gu Y, Wang Y, Chen J, Hu Y, Liu H, Zhang J, Huang Y et al. (2015) Genetic analysis for canopy architecture in an F2:3 population derived from two-type foundation parents across multi-environments. Euphytica 205:421–440. https://doi.org/10.1007/s10681-015-1401-8

Article  Google Scholar 

Incognito SJP, Maddonni GÁ, López CG et al. (2022) Untangling the genetic control of maize plant architecture plasticity. Euphytica 218(7):103. https://doi.org/10.1007/s10681-022-03054-4

Article  CAS  Google Scholar 

Ishfaq S, Ding Y, Liang X, Guo W et al. (2025) Advancing lodging resistance in maize: Integrating genetic, hormonal, and agronomic insights for sustainable crop productivity. Plant Stress 15:100777. https://doi.org/10.1016/j.stress.2025.100777

Article  CAS  Google Scholar 

Jafari F, Wang B, Wang H, Zou J et al. (2024) Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond. J Integr Plant Biol 00:1–16. https://doi.org/10.1111/jipb.13603

Article  Google Scholar 

Jiang Q, Wang Y (2025) Leaf angle regulation toward a maize smart canopy. Plant J 121(2):e17208. https://doi.org/10.1111/tpj.17208

Article  PubMed  CAS  Google Scholar 

Ji-hua T, Wen-tao T, Jian-bing Y, Xi-qing M, Yi-jiang M, Jin-rui D, Jian-Sheng L et al.(2007) Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica 155(1–2):117–124. https://doi.org/10.1007/s10681-006-9312-3

Article  CAS  Google Scholar 

Kosola KR, Eller MS, Dohleman FG, Olmedo-Pico L, Bernhard B, Winans E, Barten TJ, Brzostowski L, Murphy LR, Gu C, Ralston L, Hall M, Gillespie KM, Mack D, Below FE, Vyn TJ et al. (2023) Short-stature and tall maize hybrids have a similar yield response to split-rate vs. pre-plant N applications, but differ in biomass and nitrogen partitioning. Field Crop Res. 295:108880. https://doi.org/10.1016/j.fcr.2023.108880

Article  Google Scholar 

Ku L, Ren Z, Chen X, Shi Y, Qi J, Su H, Wang Z, Li G, Wang X, Zhu Y, Zhou J et al(2016) Genetic analysis of leaf morphology underlying the plant density response by QTL mapping in maize (Zea mays L.). Mol Breed 36:1–16. https://doi.org/10.1007/s11032-016-0483-x

Article  Google Scholar 

Ku L, Wei X, Zhang S, Zhang J, Guo S, Chen Y et al. (2011) Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.). PLOS ONE 6(6):e20621. https://doi.org/10.1371/journal.pone.0020621

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ku L, Zhang L, Zhao Z, Guo S, Su H, Ren Z, Wang Z, Li G, Wang X, Zhu Y, Zhou J, Chen Y et al. (2015) Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize (Zea mays L.). Mol Gen Genomics. 290(4):1223–1233. https://doi.org/10.1007/s00438-014-0987-1

Article  CAS  Google Scholar 

Ku LX, Zhao WM, Zhang J, Wu LC, Wang CL, Wang PA, Zhang WQ, Chen YH et al. (2010) Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet. 121(5):951–959. https://doi.org/10.1007/s00122-010-1364-z

Article  PubMed  CAS  Google Scholar 

Li C, Li Y, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Wang T, Li Y et al. (2015) Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS ONE 10(3):e0121624. https://doi.org/10.1371/journal.pone.0121624

Article  PubMed 

Comments (0)

No login
gif