Exploring the role of circRNA-miRNA-mRNA interactions in cervical cancer progression: insights into HPV status and potential therapeutic approaches

Agraz M, Mantzoros C, Karniadakis GE (2024) ChatGPT-Enhanced ROC Analysis (CERA): a shiny web tool for finding optimal cutoff points in biomarker analysis. PLoS ONE 19:1–23. https://doi.org/10.1371/journal.pone.0289141

Article  CAS  Google Scholar 

Bader GD, Hogue CWV (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2. https://doi.org/10.1186/1471-2105-4-2

Article  PubMed  PubMed Central  Google Scholar 

Bai L, Sun W, Han Z, Tang H (2021) CircSND1 Regulated by TNF-α Promotes the migration and invasion of cervical cancer cells. Cancer Manag Res 13:259–275. https://doi.org/10.2147/CMAR.S289032

Article  PubMed  PubMed Central  Google Scholar 

Balasubramaniam G, Gaidhani RH, Khan A et al (2020) Survival rate of cervical cancer from a study conducted in India. Indian J Med Sci 73:203–211. https://doi.org/10.25259/ijms_140_2020

Article  Google Scholar 

Begliarzade S, Sufianov A, Ilyasova T et al (2024) Circular RNA in cervical cancer: fundamental mechanism and clinical potential. Non-Coding RNA Res 9:116–124. https://doi.org/10.1016/j.ncrna.2023.11.009

Article  CAS  Google Scholar 

Brown J, Shah P, Vo J et al (2020) Noninvasive identification of lineage-specific circular RNA for ER-positive breast cancer. J Clin Oncol 38:3543–3543. https://doi.org/10.1200/JCO.2020.38.15_suppl.3543

Article  Google Scholar 

Cao Q, Wang N, Ren L et al (2020) MiR-125a-5p post-transcriptionally suppresses GALNT7 to inhibit proliferation and invasion in cervical cancer cells via the EGFR/PI3K/AKT pathway. Cancer Cell Int 20:1–13. https://doi.org/10.1186/s12935-020-01209-8

Article  CAS  Google Scholar 

Carneiro BA, Elvin JA, Kamath SD et al (2015) FGFR3-TACC3: a novel gene fusion in cervical cancer. Gynecol Oncol Reports 13:53–56. https://doi.org/10.1016/j.gore.2015.06.005

Article  Google Scholar 

Cataldi M, Shah NR, Felt SA, Grdzelishvili VZ (2015) Breaking resistance of pancreatic cancer cells to an attenuated vesicular stomatitis virus through a novel activity of IKK inhibitor TPCA-1. Virology 485:340–354. https://doi.org/10.1016/j.virol.2015.08.003

Article  CAS  PubMed  Google Scholar 

Che Y, Li Y, Zheng F et al (2019) TRIP4 promotes tumor growth and metastasis and regulates radiosensitivity of cervical cancer by activating MAPK, PI3K/AKT, and hTERT signaling. Cancer Lett 452:1–13. https://doi.org/10.1016/j.canlet.2019.03.017

Article  CAS  PubMed  Google Scholar 

Chen Y, Ma C, Zhang W et al (2014) Down regulation of miR-143 is related with tumor size, lymph node metastasis and HPV16 infection in cervical squamous cancer. Diagn Pathol 9:1–11. https://doi.org/10.1186/1746-1596-9-88

Article  CAS  Google Scholar 

Chen Y, Lun ATL, Smyth GK (2016) From reads to genes to pathways: Differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research 5:1438. https://doi.org/10.12688/F1000RESEARCH.8987.2

Article  PubMed  PubMed Central  Google Scholar 

Chen TH, Yang SF, Liu YF et al (2018) Association of fibroblast growth factor receptor 4 genetic polymorphisms with the development of uterine cervical cancer and patient prognosis. Reprod Sci 25:86–93. https://doi.org/10.1177/1933719117702250

Article  CAS  PubMed  Google Scholar 

Chia SK, Ellard SL, Mates M et al (2017) A phase-I study of lapatinib in combination with foretinib, a c-MET, AXL and vascular endothelial growth factor receptor inhibitor, in human epidermal growth factor receptor 2 (HER-2)-positive metastatic breast cancer. Breast Cancer Res 19:54

Article  PubMed  PubMed Central  Google Scholar 

Choueiri TK, Vaishampayan U, Rosenberg JE et al (2013) Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol 31:181–186. https://doi.org/10.1200/JCO.2012.43.3383

Article  CAS  PubMed  Google Scholar 

Cui F, Li X, Zhu X et al (2012) MiR-125b inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting phosphoinositide 3-kinase catalytic subunit delta. Cell Physiol Biochem 30:1310–1318. https://doi.org/10.1159/000343320

Article  CAS  PubMed  Google Scholar 

Davis AP, Grondin CJ, Johnson RJ et al (2021) Comparative Toxicogenomics Database (CTD): Update 2021. Nucleic Acids Res 49:D1138–D1143. https://doi.org/10.1093/nar/gkaa891

Article  CAS  PubMed  Google Scholar 

Dhanjal S, Kajitani N, Glahder J et al (2015) Heterogeneous nuclear ribonucleoprotein C proteins interact with the human papillomavirus type 16 (HPV16) early 3′-untranslated region and alleviate suppression of HPV16 late L1 mRNA splicing. J Biol Chem 290:13354–13371. https://doi.org/10.1074/jbc.M115.638098

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding Z, Liu SJ, Liu XW et al (2020) MiR-16 inhibits proliferation of cervical cancer cells by regulating KRAS. Eur Rev Med Pharmacol Sci 24:10419–10425. https://doi.org/10.26355/eurrev_202010_23393

Article  CAS  PubMed  Google Scholar 

Dong Y, Xu J, Sun B et al (2022) MET-targeted therapies and clinical outcomes: a systematic literature review. Mol Diagnosis Ther 26:203–227. https://doi.org/10.1007/s40291-021-00568-w

Article  Google Scholar 

Du Z, Whitt MA, Baumann J et al (2012) Inhibition of type i interferon-mediated antiviral action in human glioma cells by the IKK inhibitors BMS-345541 and TPCA-1. J Interf Cytokine Res 32:368–377. https://doi.org/10.1089/jir.2012.0002

Article  CAS  Google Scholar 

Fan M, Park A, Nephew KP (2005) CHIP (carboxyl terminus of Hsc70-interacting protein) promotes basal and geldanamycin-induced degradation of estrogen receptor-α. Mol Endocrinol 19:2901–2914. https://doi.org/10.1210/me.2005-0111

Article  CAS  PubMed  Google Scholar 

Fan MJ, He PJ, Lin XY et al (2020) MicroRNA-324-5p affects the radiotherapy response of cervical cancer via targeting ELAV-like RNA binding protein 1. Kaohsiung J Med Sci 36:965–972. https://doi.org/10.1002/kjm2.12277

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fei Y, Cao D, Dong R et al (2024) The cuproptosis-related gene UBE2D2 functions as an immunotherapeutic and prognostic biomarker in pan-cancer. Clin Transl Oncol 26:2718–2737. https://doi.org/10.1007/s12094-024-03495-4

Article  CAS  PubMed  Google Scholar 

Gan L, Chen Y, Liu H, Ju WH (2019) Long Non-Coding RNA ZEB1-Antisense 1 Affects Cell Migration and Invasion of Cervical Cancer by Regulating Epithelial-Mesenchymal Transition via the p38MAPK Signaling Pathway. Gynecol Obstet Invest 84:154–158. https://doi.org/10.1159/000493265

Article  CAS  Google Scholar 

Gong J, Jiang H, Shu C et al (2019) Integrated analysis of circular RNA-associated ceRNA network in cervical cancer: Observational Study. Medicine (Baltimore) 98:e16922. https://doi.org/10.1097/MD.0000000000016922

Article  CAS  PubMed  Google Scholar 

Hayek H, Rehbini O, Kosmider B et al (2024) The regulation of fatty acid synthase by exosomal miR-143-5p and miR-342-5p in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 70:259–282. https://doi.org/10.1165/rcmb.2023-0232OC

Article  CAS  PubMed  Google Scholar 

Hemmat N, Mokhtarzadeh A, Aghazadeh M et al (2020) Role of microRNAs in epidermal growth factor receptor signaling pathway in cervical cancer. Mol Biol Rep 47:4553–4568. https://doi.org/10.1007/s11033-020-05494-4

Article  CAS  PubMed  Google Scholar 

Hu Q, Du K, Mao X, Ning S (2018) miR-197 is downregulated in cervical carcinogenesis and suppresses cell proliferation and invasion through targeting forkhead box M1. Oncol Lett 15:10063–10069

PubMed  PubMed Central  Google Scholar 

Hu W, Li Q, He X et al (2020) Building a circular RNA centered gene regulation network associated with cervical squamous cell carcinoma. Epigenomics 12:1883–1898. https://doi.org/10.2217/epi-2020-0074

Article  CAS  PubMed 

Comments (0)

No login
gif