Peripheral neuropathy associated with immunomodulatory drugs: a pharmacovigilance analysis based on the FDA adverse event reporting system database

Delforge M, Bladé J, Dimopoulos MA, et al. Treatment-related peripheral neuropathy in multiple myeloma: the challenge continues. Lancet Oncol. 2010;11:1086–95.

Article  CAS  PubMed  Google Scholar 

Sałat K. Chemotherapy-induced peripheral neuropathy: part 1-current state of knowledge and perspectives for pharmacotherapy. Pharmacol Rep. 2020;72:486–507.

Article  PubMed  PubMed Central  Google Scholar 

Bae EH, Greenwald MK, Schwartz AG. Chemotherapy-induced peripheral neuropathy: mechanisms and therapeutic avenues. Neurotherapeutics. 2021;18:2384–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loprinzi CL, Lacchetti C, Bleeker J, et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. J Clin Oncol. 2020;38:3325–48.

Article  PubMed  Google Scholar 

Chen Y, Ren X, Dai Y, et al. Pharmacovigilance study of the association between peripheral neuropathy and antibody-drug conjugates using the FDA adverse event reporting system. Sci Rep. 2024;14:21386.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vargesson N, Stephens T. Thalidomide: history, withdrawal, renaissance, and safety concerns. Expert Opin Drug Saf. 2021;20:1455–7.

Article  PubMed  Google Scholar 

van de Donk NW, van der Holt B, Minnema MC, et al. Thalidomide before and after autologous stem cell transplantation in recently diagnosed multiple myeloma (HOVON-50): long-term results from the phase 3, randomised controlled trial. Lancet Haematol. 2018;5:e479–92.

Article  PubMed  Google Scholar 

Ibrahim EY, Ehrlich BE. Prevention of chemotherapy-induced peripheral neuropathy: a review of recent findings. Crit Rev Oncol Hematol. 2020;145:102831.

Article  PubMed  Google Scholar 

Li T, Timmins HC, Lazarus HM, et al. Peripheral neuropathy in hematologic malignancies—past, present and future. Blood Rev. 2020;43:100653.

Article  CAS  PubMed  Google Scholar 

Callander NS, Baljevic M, Adekola K, et al. NCCN Guidelines® insights: multiple myeloma, version 3.2022. J Natl Compr Canc Netw. 2022;20:8–19.

Article  PubMed  Google Scholar 

Pera V, van Vaerenbergh F, Kors JA, et al. Descriptive analysis on disproportionate medication errors and associated patient characteristics in the food and drug administration’s adverse event reporting system. Pharmacoepidemiol Drug Saf. 2024;33:e5743.

Article  PubMed  Google Scholar 

Jiang T, Su H, Li Y, et al. Post-marketing safety of immunomodulatory drugs in multiple myeloma: a pharmacovigilance investigation based on the FDA adverse event reporting system. Front Pharmacol. 2022;13:989032.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bringhen S, De Wit E, Dimopoulos MA. New agents in multiple myeloma: an examination of safety profiles. Clin Lymphoma Myeloma Leuk. 2017;17:391-407.e5.

Article  PubMed  Google Scholar 

McCrary JM, Goldstein D, Boyle F, et al. Optimal clinical assessment strategies for chemotherapy-induced peripheral neuropathy (CIPN): a systematic review and Delphi survey. Support Care Cancer. 2017;25:3485–93.

Article  PubMed  Google Scholar 

Raghuvanshi S, Rahman MA, Posa MK, et al. Identification of novel signals associated with US-FDA approved drugs (2013) using disproportionality analysis. Curr Drug Saf. 2024;19:395–401.

Article  PubMed  Google Scholar 

Wong CK, Ho SS, Saini B, et al. Standardisation of the FAERS database: a systematic approach to manually recoding drug name variants. Pharmacoepidemiol Drug Saf. 2015;24:731–7.

Article  PubMed  Google Scholar 

Meng L, Huang J, Qiu F, et al. Peripheral neuropathy during concomitant administration of proteasome inhibitors and factor Xa inhibitors: identifying the likelihood of drug-drug interactions. Front Pharmacol. 2022;13:757415.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Böhm R, Bulin C, Waetzig V, et al. Pharmacovigilance-based drug repurposing: the search for inverse signals via OpenVigil identifies putative drugs against viral respiratory infections. Br J Clin Pharmacol. 2021;87:4421–31.

Article  PubMed  Google Scholar 

Zhao D, Long X, Zhou J, et al. Pharmacovigilance study of infigratinib: a safety analysis of the FDA adverse event reporting system. Drugs R D. 2023;23:403–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faillie JL. Case-non-case studies: principle, methods, bias and interpretation. Therapie. 2019;74:225–32.

Article  PubMed  Google Scholar 

Böhm R, von Hehn L, Herdegen T, et al. OpenVigil FDA—inspection of U.S. American adverse drug events pharmacovigilance data and novel clinical applications. PLoS One. 2016;11:e0157753.

Article  PubMed  PubMed Central  Google Scholar 

Jiao XF, Pu L, Lan S, et al. Adverse drug reaction signal detection methods in spontaneous reporting system: a systematic review. Pharmacoepidemiol Drug Saf. 2024;33:e5768.

Article  CAS  PubMed  Google Scholar 

Liu L, Chen J, Wang L, et al. Association between different GLP-1 receptor agonists and gastrointestinal adverse reactions: a real-world disproportionality study based on FDA adverse event reporting system database. Front Endocrinol. 2022;13:1043789.

Article  Google Scholar 

Yang C, Zhao W, Chen H, et al. Cardiac adverse events associated with lacosamide: a disproportionality analysis of the FAERS database. Sci Rep. 2024;14:16202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gatti M, Antonazzo IC, Diemberger I, et al. Adverse events with sacubitril/valsartan in the real world: emerging signals to target preventive strategies from the FDA adverse event reporting system. Eur J Prev Cardiol. 2021;28:983–9.

Article  PubMed  Google Scholar 

Administration USFaD. CFR - Code of Federal Regulations Title 21 [Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm. Accessed 24 Dec 2024.

European Medicines Agency. Inclusion/exclusion criteria for the “Important Medical Events” list. https://www.ema.europa.eu/en/documents/other/inclusion-and-exclusion-criteria-important-medical-events-list-meddra_en.pdf. Accessed 18 Mar 2021.

Luo J, Gagne JJ, Landon J, et al. Comparative effectiveness and safety of thalidomide and lenalidomide in patients with multiple myeloma in the United States of America: a population-based cohort study. Eur J Cancer. 2017;70:22–33.

Article  CAS  PubMed  Google Scholar 

Dimopoulos MA, Palumbo A, Corradini P, et al. Safety and efficacy of pomalidomide plus low-dose dexamethasone in STRATUS (MM-010): a phase 3b study in refractory multiple myeloma. Blood. 2016;128:497–503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess J, Ferdousi M, Gosal D, et al. Chemotherapy-induced peripheral neuropathy: epidemiology pathomechanisms and treatment. Oncol Ther. 2021;9:385–450.

Article  PubMed  PubMed Central  Google Scholar 

Stewart AK, Jacobus S, Fonseca R, et al. Melphalan, prednisone, and thalidomide vs melphalan, prednisone, and lenalidomide (ECOG E1A06) in untreated multiple myeloma. Blood. 2015;126:1294–301.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zweegman S, van der Holt B, Mellqvist UH, et al. Melphalan, prednisone, and lenalidomide versus melphalan, prednisone, and thalidomide in untreated multiple myeloma. Blood. 2016;127:1109–16.

Article  CAS  PubMed  Google Scholar 

Committee of Neoplastic Supportive-Care CA, Cancer Clinical Chemotherapy Committee, China Anti-Cancer Association. Chinese expert consensus on the diagnosis and treatment of chemotherapy-induced peripheral neuropathy (2022 edition). Zhonghua zhong liu za zhi [Chinese journal of oncology]. 2022;44(9):928–34.

Mileshkin L, Stark R, Day B, et al. Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electrophysiologic monitoring. J Clin Oncol. 2006;24:4507–14.

Article  CAS  PubMed 

Comments (0)

No login
gif