Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F et al (2017) Prevalence and Clinical Manifestations of Primary Aldosteronism Encountered in Primary Care Practice. J Am Coll Cardiol 69: 1811–1820. https://doi.org/10.1016/j.jacc.2017.01.052
Reincke M, Bancos I, Mulatero P, Scholl UI, Stowasser M, Williams TA (2021) Diagnosis and treatment of primary aldosteronism. Lancet Diabetes Endocrinol 9: 876–892. https://doi.org/10.1016/s2213-8587(21)00210-2
Yang J, Burrello J, Goi J, Reincke M, Adolf C, Asbach E et al (2025) Outcomes after medical treatment for primary aldosteronism: an international consensus and analysis of treatment response in an international cohort. Lancet Diabetes Endocrinol 13: 119–133. https://doi.org/10.1016/s2213-8587(24)00308-5
Monticone S, D’Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F et al (2018) Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 6: 41–50. https://doi.org/10.1016/s2213-8587(17)30319-4
Williams TA, Gomez-Sanchez CE, Rainey WE, Giordano TJ, Lam AK, Marker A et al (2021) International Histopathology Consensus for Unilateral Primary Aldosteronism. J Clin Endocrinol Metab 106: 42–54. https://doi.org/10.1210/clinem/dgaa484
Mete O, Erickson LA, Juhlin CC, de Krijger RR, Sasano H, Volante M et al (2022) Overview of the 2022 WHO Classification of Adrenal Cortical Tumors. Endocr Pathol 33: 155–196. https://doi.org/10.1007/s12022-022-09710-8
Choi M, Scholl UI, Yue P, Björklund P, Zhao B, Nelson-Williams C et al (2011) K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331: 768–772. https://doi.org/10.1126/science.1198785
Scholl UI, Goh G, Stölting G, de Oliveira RC, Choi M, Overton JD et al (2013) Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 45: 1050–1054. https://doi.org/10.1038/ng.2695
Beuschlein F, Boulkroun S, Osswald A, Wieland T, Nielsen HN, Lichtenauer UD et al (2013) Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 45: 440–444, 444e441–442. https://doi.org/10.1038/ng.2550
Azizan EA, Poulsen H, Tuluc P, Zhou J, Clausen MV, Lieb A et al (2013) Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet 45: 1055–1060. https://doi.org/10.1038/ng.2716
Scholl UI, Stölting G, Nelson-Williams C, Vichot AA, Choi M, Loring E et al (2015) Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 4: e06315. https://doi.org/10.7554/eLife.06315
Fernandes-Rosa FL, Daniil G, Orozco IJ, Göppner C, El Zein R, Jain V et al (2018) A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nat Genet 50: 355–361. https://doi.org/10.1038/s41588-018-0053-8
Rege J, Bandulik S, Nanba K, Kosmann C, Blinder AR, Plain A et al (2023) Somatic SLC30A1 mutations altering zinc transporter ZnT1 cause aldosterone-producing adenomas and primary aldosteronism. Nat Genet 55: 1623–1631. https://doi.org/10.1038/s41588-023-01498-5
Yang Y, Gomez-Sanchez CE, Jaquin D, Aristizabal Prada ET, Meyer LS, Knösel T et al (2019) Primary Aldosteronism: KCNJ5 Mutations and Adrenocortical Cell Growth. Hypertension 74: 809–816. https://doi.org/10.1161/hypertensionaha.119.13476
Romero DG, Yanes LL, de Rodriguez AF, Plonczynski MW, Welsh BL, Reckelhoff JF et al (2007) Disabled-2 is expressed in adrenal zona glomerulosa and is involved in aldosterone secretion. Endocrinology 148: 2644–2652. https://doi.org/10.1210/en.2006-1509
Boulkroun S, Samson-Couterie B, Dzib JF, Lefebvre H, Louiset E, Amar L et al (2010) Adrenal cortex remodeling and functional zona glomerulosa hyperplasia in primary aldosteronism. Hypertension 56: 885–892. https://doi.org/10.1161/hypertensionaha.110.158543
Williams TA, Monticone S, Crudo V, Warth R, Veglio F, Mulatero P (2012) Visinin-like 1 is upregulated in aldosterone-producing adenomas with KCNJ5 mutations and protects from calcium-induced apoptosis. Hypertension 59: 833–839. https://doi.org/10.1161/hypertensionaha.111.188532
Felizola SJ, Katsu K, Ise K, Nakamura Y, Arai Y, Satoh F et al (2015) Pre-B Lymphocyte Protein 3 (VPREB3) Expression in the Adrenal Cortex: Precedent for non-Immunological Roles in Normal and Neoplastic Human Tissues. Endocr Pathol 26: 119–128. https://doi.org/10.1007/s12022-015-9366-7
Gong S, Sun N, Meyer LS, Tetti M, Koupourtidou C, Krebs S et al (2023) Primary Aldosteronism: Spatial Multiomics Mapping of Genotype-Dependent Heterogeneity and Tumor Expansion of Aldosterone-Producing Adenomas. Hypertension 80: 1555–1567. https://doi.org/10.1161/hypertensionaha.123.20921
Iwahashi N, Umakoshi H, Seki T, Gomez-Sanchez CE, Mukai K, Suematsu M et al (2022) Characterization of Aldosterone-producing Cell Cluster (APCC) at Single-cell Resolution. J Clin Endocrinol Metab 107: 2439–2448. https://doi.org/10.1210/clinem/dgac394
Murakami M, Hara K, Ikeda K, Horino M, Okazaki R, Niitsu Y et al (2024) Single-Nucleus Analysis Reveals Tumor Heterogeneity of Aldosterone-Producing Adenoma. Hypertension 81: 361–371. https://doi.org/10.1161/hypertensionaha.123.21446
Kullak-Ublick GA, Beuers U, Paumgartner G (2000) Hepatobiliary transport. J Hepatol 32: 3–18. https://doi.org/10.1016/s0168-8278(00)80411-0
Kobayashi M, Funayama R, Ohnuma S, Unno M, Nakayama K (2016) Wnt-β-catenin signaling regulates ABCC3 (MRP3) transporter expression in colorectal cancer. Cancer Sci 107: 1776–1784. https://doi.org/10.1111/cas.13097
Sato Y, Kobayashi M, Ohira M, Funayama R, Maekawa M, Karasawa H et al (2024) Downregulation of ABCC3 activates MAPK signaling through accumulation of deoxycholic acid in colorectal cancer cells. Cancer Sci 115: 1778–1790. https://doi.org/10.1111/cas.16132
Liu H, Yue L, Hong W, Zhou J (2024) SMARCA4 (BRG1) activates ABCC3 transcription to promote hepatocellular carcinogenesis. Life Sci 347: 122605. https://doi.org/10.1016/j.lfs.2024.122605
Adamska A, Ferro R, Lattanzio R, Capone E, Domenichini A, Damiani V et al (2019) ABCC3 is a novel target for the treatment of pancreatic cancer. Adv Biol Regul 73: 100634. https://doi.org/10.1016/j.jbior.2019.04.004
Yu Z, Zhang C, Wang H, Xing J, Gong H, Yu E et al (2014) Multidrug resistance-associated protein 3 confers resistance to chemoradiotherapy for rectal cancer by regulating reactive oxygen species and caspase-3-dependent apoptotic pathway. Cancer Lett 353: 182–193. https://doi.org/10.1016/j.canlet.2014.07.025
Seborova K, Kloudova-Spalenkova A, Koucka K, Holy P, Ehrlichova M, Wang C et al (2021) The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes. Int J Mol Sci 23. https://doi.org/10.3390/ijms23010073
Balaji SA, Udupa N, Chamallamudi MR, Gupta V, Rangarajan A (2016) Role of the Drug Transporter ABCC3 in Breast Cancer Chemoresistance. PLoS One 11: e0155013. https://doi.org/10.1371/journal.pone.0155013
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347: 1260419. https://doi.org/10.1126/science.1260419
Pang Y, Gong S, Tetti M, Sun Z, Mir-Bashiri S, Bidlingmaier M et al (2025) EGR1 regulates oxidative stress and aldosterone production in adrenal cells and aldosterone-producing adenomas. Redox Biol 80: 103498. https://doi.org/10.1016/j.redox.2025.103498
Yang Y, Tetti M, Vohra T, Adolf C, Seissler J, Hristov M et al (2021) BEX1 Is Differentially Expressed in Aldosterone-Producing Adenomas and Protects Human Adrenocortical Cells From Ferroptosis. Hypertension 77: 1647–1658. https://doi.org/10.1161/hypertensionaha.120.16774
Gomez-Sanchez CE, Qi X, Velarde-Miranda C, Plonczynski MW, Parker CR, Rainey W et al (2014) Development of monoclonal antibodies against human CYP11B1 and CYP11B2. Mol Cell Endocrinol 383: 111–117. https://doi.org/10.1016/j.mce.2013.11.022
Fernandes-Rosa FL, Amar L, Tissier F, Bertherat J, Meatchi T, Zennaro MC et al (2015) Functional histopathological markers of aldosterone producing adenoma and somatic KCNJ5 mutations. Mol Cell Endocrinol 408: 220–226. https://doi.org/10.1016/j.mce.2015.01.020
Sun Z, Kemter E, Pang Y, Bidlingmaier M, Wolf E, Reincke M et al (2025) ATP2A3 in Primary Aldosteronism: Machine Learning-Based Discovery and Functional Validation. Hypertension 82: 319–332. https://doi.org/10.1161/hypertensionaha.124.23817
Juhlin CC, Bertherat J, Giordano TJ, Hammer GD, Sasano H, Mete O (2021) What Did We Learn from the Molecular Biology of Adrenal Cortical Neoplasia? From Histopathology to Translational Genomics. Endocr Pathol 32: 102–133. https://doi.org/10.1007/s12022-021-09667-0
Nanba K, Vaidya A, Williams GH, Zheng I, Else T, Rainey WE (2017) Age-Related Autonomous Aldosteronism. Circulation 136: 347–355. https://doi.org/10.1161/circulationaha.117.028201
Lim JS, Rainey WE (2020) The Potential Role of Aldosterone-Producing Cell Clusters in Adrenal Disease. Horm Metab Res 52: 427–434. https://doi.org/10.1055/a-1128-0421
Comments (0)